Skip to main content

Stem Cell Therapy for the Treatment of Cartilage Defects and Osteoarthritis

  • Chapter
  • First Online:
Bone and Cartilage Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Cartilage defects (CDs) and osteoarthritis (OA) are notorious for their reluctance to current therapeutic measures. Pathogenic mechanisms, onset, and severity of cartilage diseases are largely variable; however, they share the common trait of increased incidence and prevalence. Stem cell therapies are new therapeutic tools that could lead to complete structural and functional cartilage regeneration. Basic, preclinical, and clinical research using different types of stem cell population are available, showing promising preliminary results. For reasons such as availability, relatively simple processing steps, and clearance of ethical concerns, mesenchymal stem cells (MSCs) appear to be the source that has already made its way to clinical settings. Case reports, several results from different phase clinical trials as well as a couple of pertinent meta analyses are available, pointing towards an increased interest in the field in both scientific as well as clinical practice. This chapter will briefly describe type and epidemiology of CD and OA, further introducing MSC treatment as a concept as well as facts about the therapeutic opportunity with a focus on already published results from case series and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ADIPOA Trial. Clinical study. 2012. https://clinicaltrials.gov/ct2/show/NCT01585857. Accessed 25 Apr 2015.

  • Alsalameh S, Amin R, Gemba T, et al. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004;50(5):1522–32.

    Article  PubMed  Google Scholar 

  • Alvarez-Viejo M, Menendez-Menendez Y, Blanco-Gelaz MA, et al. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc. 2013;45(1):434–9.

    Article  CAS  PubMed  Google Scholar 

  • Ameye LG, Young MF. Animal models of osteoarthritis: lessons learned while seeking the “Holy Grail”. Curr Opin Rheumatol. 2008;18(5):537–47.

    Article  Google Scholar 

  • Anghileri E, Marconi S, Pignatelli A, et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 2008;17(5):909–16.

    Article  CAS  PubMed  Google Scholar 

  • Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araki S, Imai S, Ishigaki H, et al. Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model. Acta Orthop. 2015;86(1):119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer CW, Williams R, Nelson L, et al. Articular Cartilage-Derived Stem Cells: Identification, Characterisation and their Role in Spontaneous Repair Rheumatol Curr Res. 2012. doi:10.4172/2161-1149.S3-005.

  • Arinzeh TL. Mesenchymal stem cells for bone repair: preclinical studies and potential orthopedic applications. Foot Ankle Clin. 2005;10(4):651–65.

    Article  PubMed  Google Scholar 

  • Aroen A, Loken S, Heir S, et al. Articular cartilage lesions in 993 consecutive arthroscopies. Am J Sports Med. 2004;32:211–5.

    Article  PubMed  Google Scholar 

  • Arokoski JPA, Jurvelin JS, Väätäinen U, et al. Normal and pathological adaptations of articular cartilage to joint loading. Scan J Med Sci Spor. 2000;10:86–198.

    Google Scholar 

  • Asahara T, Kalka C, Isner JM. Stem cell therapy and gene transfer for regeneration. Gene Ther. 2000;7(6):451–7.

    Article  CAS  PubMed  Google Scholar 

  • ASCOT Trial. Autologous stem cells, chondrocytes or the two (ASCOT) information for the physicians. 2014. http://www.rjah.nhs.uk/RJAHNHS/files/01/0147055e-eeab-49e0-8179-16b27bc5b227.pdf. Accessed 25 Apr 2015.

  • ATMP. Advanced Medicinal Therapies and the CAT. 2013. http://www.ema.europa.eu/docs/en_GB/document_library/Brochure/2011/03/WC500104226.pdf. Accessed 1 May 2015.

  • Aurich M, Hofmann GO, Rolauffs B, et al. Differences in injury pattern and prevalence of cartilage lesions in knee and ankle joints: a retrospective cohort study. Orthop Rev. 2014;6(4):5611.

    Article  Google Scholar 

  • Aust L, Devlin B, Foster SJ, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  • Baliunas AJ, Hurwitz DE, Ryals AB, et al. Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoart Cartilage. 2002;10(7):573–9.

    Article  CAS  Google Scholar 

  • Bara JJ, Richards RG, Alini M, et al. Concise review: bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells. 2014;32(7):1713–23.

    Article  CAS  PubMed  Google Scholar 

  • Behery O, Siston RA, Harris JD, et al. Treatment of cartilage defects of the knee: expanding on the existing algorithm. Clin J Sport Med. 2014;24(1):21–30.

    Article  PubMed  Google Scholar 

  • Black LL, Gaynor J, Gahring D, et al. Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther. 2007;8(4):272–84.

    PubMed  Google Scholar 

  • Black LL, Gaynor J, Adams C, et al. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther. 2008;9(3):192–200.

    PubMed  Google Scholar 

  • Boeuf S, Richter W. Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res Ther. 2010;1(4):31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breinan HA, Minas T, Hsu HP, et al. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am. 1997;79(10):1439–51.

    Article  CAS  PubMed  Google Scholar 

  • Brittberg M. Evaluation of cartilage injuries and cartilage repair. Osteologie. 2000;9:17–25.

    Google Scholar 

  • Brittberg M, Peterson L. Introduction to an articular cartilage classification. ICRS Newslett. 1998;1:3.

    Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte. Transplant N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  • Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    CAS  PubMed  Google Scholar 

  • Burns B, Rohrich RJ, Chung KC. The Levels of Evidence and their role in evidence-based medicine. Plast Reconstr Surg. 2011;128(1):305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI. Mesenchymal stem cell. J Orthop Res. 1991;9:641–50.

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  • Centeno CJ. Clinical challenges and opportunities of mesenchymal stem cells in musculoskeletal medicine. PMR. 2014;6(1):70–7.

    Article  Google Scholar 

  • Centeno CJ, Busse D, Kissiday J. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells, platelet lysate and dexamethasone. Am J Case Rep. 2008;9:246–51.

    Google Scholar 

  • Centeno CJ, Schultz JR, Cheever M, et al. Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther. 2010;5(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  • Centeno CJ, Schultz JR, Cheever M, et al. Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther. 2011;6(4):368–78.

    Article  CAS  PubMed  Google Scholar 

  • Cesselli D, Beltrami AP, Rigo S, et al. Multipotent progenitor cells are present in human peripheral blood. Circ Res. 2009;104:1225–34.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang C, Lü S, et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res. 2005;319(3):429–38.

    Article  PubMed  Google Scholar 

  • Chen W-C, Yao C-L, Wei Y-H, et al. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology. 2011;63(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  • Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung JY, Song M, Ha CW, et al. Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model. Stem Cell Res Ther. 2014;5(2):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curl WW, Krome J, Gordon ES, et al. Cartilage injuries: a review of 31, 516 knee arthroscopies. Arthroscopy. 1997;13:456–60.

    Article  CAS  PubMed  Google Scholar 

  • Dashtdar H, Rothan HA, Tay T, et al. A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res. 2011;29(9):1336–42.

    Article  PubMed  Google Scholar 

  • Davatchi F, Abdollahi BS, Mohyeddin M, et al. Mesenchymal stem cell therapy for knee osteoarthritis: preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5.

    Article  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Tylzanowski P, et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.

    Article  PubMed  Google Scholar 

  • De Mara CS, Sartori AR, Duarte AS, et al. Periosteum as a source of mesenchymal stem cells: the effects of TGF-β3 on chondrogenesis. Clinics. 2011;66(3):487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deasy BM, Jankowski RJ, Huard J. Muscle-derived stem cells: characterization and potential for cell-mediated therapy. Blood Cells Mol Dis. 2001;27(5):924–33.

    Article  CAS  PubMed  Google Scholar 

  • Desando G, Cavallo C, Sartoni F. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 2013;15:R22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diekman BO, Rowland CR, Lennon DP, et al. Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix. Tissue Eng Part A. 2010;16(2):523–33.

    Article  CAS  PubMed  Google Scholar 

  • Diekman BO, Wu CL, Louer CR, et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis. Cell Transplant. 2013;22(8):1395–408.

    Article  PubMed  Google Scholar 

  • Divya MS, Roshin GE, Divya TS, et al. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther. 2012;3(6):57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  • Dunkin BS, Lattermann C. New and emerging techniques in cartilage repair: MACI. Oper Techn Sport Med. 2013;21(2):100–7.

    Article  Google Scholar 

  • Duscher D, Rennert RC, Januszyk M, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep. 2014;4:7144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.

    Article  CAS  PubMed  Google Scholar 

  • Evaluation of Safety and Exploratory Efficacy of CARTISTEM®, a Cell Therapy Product for Articular Cartilage Defects. 2014. https://clinicaltrials.gov/ct2/show/NCT01733186?term=cartilage+defects+stem+cells&rank=7. Accessed 29 Apr 2015.

  • Fan J, Varshney RR, Ren L, et al. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev. 2009;15(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  • Felson DT, Naimark A, Anderson J, et al. The prevalence of knee osteoarthritis in the elderly. the Framingham osteoarthritis study. Arthritis Rheum. 1987;30:914–8.

    Article  CAS  PubMed  Google Scholar 

  • Frenkel SR, Di Cesare PE. Degradation and repair of articular cartilage. Front Biosci. 1999;4:D671–85.

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ. Osteogenic stem cells in the bone marrow. Bone Min Res. 1990;7:243–72.

    Article  Google Scholar 

  • Frisbie DD, Kisiday JD, Kawcak CE, et al. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res. 2009;27:1675–80.

    Article  PubMed  Google Scholar 

  • Gage FH. Cell therapy. Nature. 1998;392(6679 Suppl):18–24.

    CAS  PubMed  Google Scholar 

  • Giannini S, Buda R, Vannini F, et al. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467:3307–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomoll AH, Madry H, Knutsen G, et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc. 2010;18(4):434–47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grewal SS, Barker JN, Davies SM, et al. Unrelated donor hematopoietic cell transplantation: marrow or umbilical cord blood? Blood. 2003;101:4233–44.

    Article  CAS  PubMed  Google Scholar 

  • Grogan SP, Miyaki S, Asahara H, et al. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther. 2009;11(3):R85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guercio A, Di Marco P, Casella S, et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int. 2012;36:189–94.

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Das AK, Chullikana A, et al. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther. 2012;3(4):25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haleem AM, Singergy AA, Sabry D, et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1(4):253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris JD, Siston RA, Brophy RH, et al. Failures, re-operations, and complications after autologous chondrocyte implantation--a systematic review. Osteoart Cartilage. 2011;19(7):779–91.

    Article  CAS  Google Scholar 

  • Hattori S , Oxford C, Reddi AH. Identification of superficial zone articular chondrocyte. 2007. Biochem Biophys Res Commun. 358(1), 99–103. http://doi.org/10.1016/j.bbrc.04.142

  • Hoffman JK, Geraghty S, Protzman, N. Articular cartilage repair using marrow stimulation augmented with a viable chondral allograft: 9-month postoperative histological evaluation. Case Reports Orthopedics. 2015;617365. doi:10.1155/2015/617365.

    Google Scholar 

  • Holig K, Kramer M, Kroschinsky F, et al. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood. 2009;114:3757–63.

    Article  PubMed  CAS  Google Scholar 

  • Huang JI, Kazmi N, Durbhakula MM, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res. 2005;23(6):1383–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Yamaza T, Shea LD, et al. Stem/Progenitor cell-mediated de novoregeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Pt A. 2010;16:605–15.

    Article  CAS  Google Scholar 

  • Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects osteoarthritis. Cartilage. 2002;10(6):432–63.

    Article  CAS  Google Scholar 

  • Hunziker EB. The elusive path to cartilage regeneration. Adv Mater (Deerfield Beach, Fla.), 2009;21(32–33);3419–24.

    Google Scholar 

  • Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.

    Article  CAS  PubMed  Google Scholar 

  • Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28(1):5–15.

    Article  PubMed  Google Scholar 

  • Jordan JM, Helmick CG, Renner JB, et al. Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project. J Rheumatol. 2007;34:172–80.

    PubMed  Google Scholar 

  • Jordan JM, Helmick CG, Renner JB, et al. Prevalence of hip symptoms and radiographic and symptomatic hip osteoarthritis in African Americans and Caucasians: the Johnston County Osteoarthritis Project. J Rheumatol. 2009;36(4):809–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10(6):709–16.

    Article  CAS  PubMed  Google Scholar 

  • Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkhof HJM, Meulenbelt I, Akune T, et al. Recommendations for standardization and phenotype definitions in genetic studies of osteoarthritis: the TREAT-OA consortium. Osteoart Cartilage. 2011;19(3):254–64.

    Article  CAS  Google Scholar 

  • Kilroy GE, Foster SJ, Wu X, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Linsenmeyer KD, Vlad SC, et al. Prevalence of radiographic and symptomatic hip osteoarthritis in an urban United States community: the Framingham osteoarthritis study. Arthritis Rheumatol. 2014;66(11):3013–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein TJ, Rizzi SC, Reichert JC, et al. Strategies for zonal cartilage repair using hydrogels. Macromol Biosci. 2009;9(11):1049–58.

    Article  CAS  PubMed  Google Scholar 

  • Koelling S, Kruegel J, Irmer M, et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell. 2009;4(4):324–35.

    Article  CAS  PubMed  Google Scholar 

  • Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29(4):748–55.

    Article  PubMed  Google Scholar 

  • Kuettner KE, Memoli VA, Pauli BU, et al. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. II. Maintenance of collagen and proteoglycan phenotype. J Cell Biol. 1982;93(3):751–7.

    Article  CAS  PubMed  Google Scholar 

  • Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Pt A. 2008;14(10):1615–27.

    Article  CAS  Google Scholar 

  • Kuroda R, Usas A, Kubo S, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum. 2006;54(2):433–42.

    Article  CAS  PubMed  Google Scholar 

  • Kusakabe T. Regulatory perspectives of Japan. 2014. https://www.pmda.go.jp/files/000164165.pdf. Accessed 1 May 2015.

  • Lawrence RC, Helmick CG, Arnett FC, et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41(5):778–99.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence RC, Felson DT, Helmick CG, and National Arthritis Data Workgroup, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis Rheum. 2008;58:26–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S, Nardo L, Kumar D, et al. Scoring hip osteoarthritis with MRI (SHOMRI): a whole joint osteoarthritis evaluation system. J Magn Reson Imaging. 2014. doi:10.1002/jmri.24722.

    Google Scholar 

  • Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotz MK, Kraus VB. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther. 2010;12(3):211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackay AM, Beck SC, Murphy MJ, et al. Tissue Eng. 1998;4(4):415–28.

    Article  CAS  PubMed  Google Scholar 

  • Mankin H. Current concepts review: the response of articular cartilage to mechanical injury. J Bone Joint Surg. 1982;64:460–6.

    Article  CAS  PubMed  Google Scholar 

  • Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.

    Article  PubMed  Google Scholar 

  • McCarthy HE, Bara JJ, Brakspear K, et al. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. Vet J. 2012;192(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  • McIlwraith CW, Frisbie DD, Rodkey WG, et al. Evaluation of intraarticular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy. 2011;27(11):1552–61.

    Article  PubMed  Google Scholar 

  • Michael JW, Wurth A, Eysel P, et al. Long-term results after operative treatment of osteochondritis dissecans of the knee joint-30 year results. Int Orthop. 2008;32(2):217–21.

    Article  CAS  PubMed  Google Scholar 

  • Microfracture versus Adipose Derived Stem Cells for the Treatment of Articular Cartilage Defects. 2014. https://clinicaltrials.gov/ct2/show/NCT02090140?term=cartilage+defects+stem+cells&rank=5. Accessed 20 Apr 2015.

  • Milch H, Raisman V. Arthrotomy of the knee-joint: a statistical study of two hundred fifty cases. Ann Surg. 1934;100(2):357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minas T, Gomoll AH, Solhpour S, et al. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res. 2010;468(1):147–57.

    Article  PubMed  Google Scholar 

  • Mobasheri A, Kalamegam G, Musumeci G, et al. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78(3):188–98.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium–and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum. 2006;54:843–53.

    Article  CAS  PubMed  Google Scholar 

  • Murphy JM, Fink DJ, Hunziker EB, et al. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48:3464–74. doi:10.1002/art.11365.

    Article  PubMed  Google Scholar 

  • Murrell WD, Anz WD, Badsha H, et al. Regenerative treatments to enhance orthopedic surgical outcome. PM&R. 2015;7(4 Suppl):S41–52.

    Article  Google Scholar 

  • Nejadnik H, Hui JH, Feng Choong EP, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  PubMed  Google Scholar 

  • Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin North Am. 2013;39(1):1–19.

    Article  PubMed  Google Scholar 

  • Orth P, Rey-Rico AM, Venkatesan JK, et al. Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning Adv Appl. 2014;7:1–17.

    Google Scholar 

  • Osiris Therapeutics Inc. Chondrogen data. 2013. http://www.osiris.com/prod_chondrogen.php. Accessed 24 Apr 2015.

  • Oswald J, Boxberger S, Jørgensen B. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84.

    Article  PubMed  Google Scholar 

  • Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961;43-B:752–7.

    CAS  PubMed  Google Scholar 

  • Phadnis SM, Ghaskadbi SM, Hardikar AA, Bhonde RR. Mesenchymal Stem Cells Derived from Bone Marrow of Diabetic Patients Portrait Unique Markers Influenced by the Diabetic Microenvironment. Rev.Diabet Stud: RDS. 2009;6(4):260–270. doi:10.1900/RDS.2009.6.260.

    Google Scholar 

  • Peeters CM, Leijs MJ, Reijman M, et al. Safety of intraarticular cell-therapy with culture-expanded stem cells in humans: asystematic literature review. Osteoarthr Cartilage. 2013;21:1465–73.

    Article  CAS  Google Scholar 

  • Pereira D, Peleteiro B, Araújo J, et al. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthr Cartilage. 2011;11:1270–85.

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  • Pournasr B, Mohamadnejad M, Bagheri M, et al. In vitro differentiation of human bone marrow mesenchymal stem cells into hepatocyte-like cells. Arch Iran Med. 2011;14(4):244–9.

    CAS  PubMed  Google Scholar 

  • Pritzke KPH, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoart Cartilage. 2006;14(1):13–29.

    Article  Google Scholar 

  • Prockop DJ. “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther. 2007;82:241–3.

    Article  CAS  PubMed  Google Scholar 

  • Redman SN, Dowthwaite GP, Thomson BM, et al. The cellular responses of articular cartilage to sharp and blunt trauma. Osteoart Cartilage. 2004;12(2):106–6.

    Article  CAS  Google Scholar 

  • Rodríguez JP, Astudillo P, Ríos S, Pino AM. Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr Stem Cell Res Ther. 2008;3(3):208–18.

    Article  PubMed  Google Scholar 

  • Sato M, Uchida K, Nakajima H, et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther. 2012;14(1):R31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saw KY, Anz AW, Jee CS, et al. Articular cartilage regeneration with intraarticular injections of autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29:684–94.

    Article  PubMed  Google Scholar 

  • Sellam J, Berenbaum F. Is osteoarthritis a metabolic disease? Joint Bone Spine. 2013;80(6):568–73.

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa S, Sekiya I, Sakaguchi Y. In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: optimal condition and comparison with bone marrow-derived cells. J Cell Biochem. 2006;97(1):84–97.

    Article  CAS  PubMed  Google Scholar 

  • Skowroński J, Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells – results. Ortop Traumatol Rehabil. 2013;15(3):195–204.

    Article  PubMed  Google Scholar 

  • Solchagan LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and Tricks. Met Mol Biol (Clifton, NJ). 2011;698:253–78.

    Google Scholar 

  • Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;(391 Suppl):S362–9.

    Google Scholar 

  • Steele JAM, McCullen SD, Callanan A, et al. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater. 2014;10(5):2065–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolzing A, Jones E, McGonagle D, et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129(3):163–73.

    Article  CAS  PubMed  Google Scholar 

  • Sun SF, Chou YJ, Hsu CW, et al. Hyaluronic acid as a treatment for ankle osteoarthritis. Curr Rev Musculoskelet Med. 2009;2(2):78–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tay LX, Ahmad RE, Dashtdar H, et al. Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am J Sports Med. 2012;40(1):83–90.

    Article  PubMed  Google Scholar 

  • ter Huurne M, Schelbergen R, Blattes R, et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012;64:3604–13.

    Article  PubMed  CAS  Google Scholar 

  • Truong MD, Chung JY, Kim YJ, et al. Histomorphochemical comparison of microfracture as a first-line and a salvage procedure: is microfracture still a viable option for knee cartilage repair in a salvage situation? J Orthop Res. 2014;32(6):802–10.

    Article  PubMed  Google Scholar 

  • Tuan RS. A second-generation autologous chondrocyte implantation approach to the treatment of focal articular cartilage defects. Arthritis Res Ther. 2007;9(5):109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuli R, Tuli S, Nandi S, et al. Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells. 2003;21(6):681.

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk CN, Reilingh ML, Zengerink M, et al. Osteochondral defects in the ankle: why painful? Knee Surg Sport Tr A. 2010;18(5):570–80.

    Article  Google Scholar 

  • van Lent PL, van den Berg WP. Mesenchymal stem cell therapy in osteoarthritis: advanced tissue repair or intervention with smouldering synovial activation? Arthritis Res Ther. 2013;15(2):112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Pham P, Bui KH, Ngo DQ, et al. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther. 2013;4(4):91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varma HS, Dadarya B, Vidyarthi A, et al. Mesenchymal stem cells derived from bone marrow of diabetic patients portrait unique markers influenced by the diabetic microenvironment. RDS. 2009;6(4):260–70.

    Google Scholar 

  • Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee: stem cells. J Indian Med Assoc. 2010;108:583–5.

    CAS  PubMed  Google Scholar 

  • Wagner W, Wein F, Seckinger A. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33(11):1402–16.

    Article  CAS  PubMed  Google Scholar 

  • Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76(4):579–92.

    Article  CAS  PubMed  Google Scholar 

  • Wakitani S, Nawata M, Tensho K. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1(1):74–9.

    Article  PubMed  Google Scholar 

  • Williams JM, Rayan V, Sumner DR, et al. The use of intra-articular Na-hyaluronate as a potential chondroprotective device in experimentally induced acute articular cartilage injury and repair in rabbits. J Orthop Res. 2003;21(2):305–11.

    Article  CAS  PubMed  Google Scholar 

  • Wittich CM, Ficalora RD, Mason TG, et al. Musculoskeletal injection. Mayo Clin Proc. 2009;84(9):831–6; quiz 837.

    Google Scholar 

  • Wong KL, Lee KB, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29(12):2020–8.

    Article  PubMed  Google Scholar 

  • Woolf A, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81(9):646–65.

    PubMed  PubMed Central  Google Scholar 

  • Yan H, Yu C. Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy. 2007;23(2):178–87.

    Article  PubMed  Google Scholar 

  • Zamber RW, Teitz CC, McGuire DA, et al. Articular cartilage lesions of the knee. Arthroscopy. 1989;5:258–68.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Niu J, Kelly-Hayes M, et al. Prevalence of symptomatic hand osteoarthritis and its impact on functional status among the elderly: the Framingham Study. Am J Epidemiol. 2002;156(11):1021–7.

    Article  PubMed  Google Scholar 

  • Zhang W, Doherty M, Peat G, et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2010;69(3):483–9.

    Article  CAS  PubMed  Google Scholar 

  • Zscharnack M, Hepp P, Richter R, et al. Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in anovine model. Am J Sports Med. 2010;38(9):1857–69.

    Article  PubMed  Google Scholar 

  • Zuk PA. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell. 2010;21(11):1783–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Cionca Dan for providing the arthroscopic images and for the logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Labusca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Labusca, L., Zugun-Eloae, F. (2016). Stem Cell Therapy for the Treatment of Cartilage Defects and Osteoarthritis. In: Pham, P. (eds) Bone and Cartilage Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-40144-7_2

Download citation

Publish with us

Policies and ethics