Skip to main content

Clinical Applications of Stem Cells for Bone Repair

  • Chapter
  • First Online:
Bone and Cartilage Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 865 Accesses

Abstract

The skeletal system is frequently injured and although most bones heal well, there are many incidences of bony non-unions. These can have significant implications on the patient and on the healthcare service. Current treatment options include osteotomies or bony transport and transplant. Stem cells have been shown to be a viable method of stimulating local bone regeneration, without the associated risks of traditional treatment regimens. They can be used in combination with scaffolds to provide a three-dimensional structure, with growth factors that would allow cell proliferation and differentiation, and gene therapy to modify the gene expression to that of the native tissue. In this chapter, tissue engineering principles are discussed along with the role of mesenchymal stem cells, scaffolds and growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andriano KP, Tabata Y, Ikada Y, Heller J. In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res. 1999;48(5):602–12.

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92.

    Article  CAS  PubMed  Google Scholar 

  • Boden SD. Bioactive factors for bone tissue engineering. Clin Orthop Relat Res. 1999(367 Suppl):S84–94.

    Google Scholar 

  • Braddock M, Houston P, Campbell C, Ashcroft P. Born again bone: tissue engineering for bone repair. News Physiol Sci. 2001;16:208–13.

    CAS  PubMed  Google Scholar 

  • Brekke JH, Toth JM. Principles of tissue engineering applied to programmable osteogenesis. J Biomed Mater Res. 1998;43(4):380–98.

    Article  CAS  PubMed  Google Scholar 

  • Cancedda R, Bianchi G, Derubeis A, Quarto R. Cell therapy for bone disease: a review of current status. Stem Cells. 2003;21(5):610–9.

    Article  CAS  PubMed  Google Scholar 

  • Chimutengwende-Gordon M, Khan WS. Advances in the use of stem cells and tissue engineering applications in bone repair. Curr Stem Cell Res Ther. 2012;7(2):122–6.

    Article  CAS  PubMed  Google Scholar 

  • Fossett E, Khan WS, Longo UG, Smitham PJ. Effect of age and gender on cell proliferation and cell surface characterization of synovial fat pad derived mesenchymal stem cells. J Orthop Res. 2012;30(7):1013–8.

    Article  PubMed  Google Scholar 

  • Govender S, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84-A(12):2123–34.

    Article  PubMed  Google Scholar 

  • Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, Giardino R, Facchini A. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials. 2001;22(17):2417–24.

    Article  CAS  PubMed  Google Scholar 

  • Gundle R, Joyner CJ, Triffitt JT. Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells. Bone. 1995;16(6):597–601.

    Article  CAS  PubMed  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant. 1997;6(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  • Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol. 2000;18(9):954–8.

    Article  CAS  PubMed  Google Scholar 

  • Kanitkar M, Tailor HD, Khan WS. The use of growth factors and mesenchymal stem cells in orthopaedics. Open Orthop J. 2011;5:271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan WS, Malik A, Hardingham T. Stem cell applications and tissue engineering approaches in surgical practice. J Perioper Pract. 2009;19(4):130–5.

    PubMed  Google Scholar 

  • Khan WS, Pastides P, Marsh DR. Tissue engineering approaches for bone repair. In: Khan WS, Pastides P, editors. Tissue engineering and the musculoskeletal system: a limitless cure? New York: Nova Science Publishers; 2012a. p. 31–46.

    Google Scholar 

  • Khan WS, Adesida AB, Tew SR, Longo UG, Hardingham TE. Fat pad‐derived mesenchymal stem cells as a potential source for cell‐based adipose tissue repair strategies. Cell Prolif. 2012b;45(2):111–20.

    Article  CAS  PubMed  Google Scholar 

  • Kruyt MC, van Gaalen SM, Oner FC, Verbout AJ, de Bruijn JD, Dhert WJ. Bone tissue engineering and spinal fusion: the potential of hybrid constructs by combining osteoprogenitor cells and scaffolds. Biomaterials. 2004;25(9):1463–73.

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Peters MC, Anderson KW, Mooney DJ. Controlled growth factor release from synthetic extracellular matrices. Nature. 2000;408(6815):998–1000.

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1–2):1–22.

    Article  CAS  PubMed  Google Scholar 

  • LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Google Scholar 

  • Longo UG, Loppini M, Berton A, La Verde L, Khan WS, Denaro V. Stem cells from umbilical cord and placenta for musculoskeletal tissue engineering. Curr Stem Cell Res Ther. 2012;7(4):272–81.

    Article  CAS  PubMed  Google Scholar 

  • Mabvuure N, Hindocha S, Khan WS. The role of bioreactors in cartilage tissue engineering. Curr Stem Cell Res Ther. 2012;7(4):287–92.

    Article  CAS  PubMed  Google Scholar 

  • Mafi P, Hindocha S, Mafi R, Khan WS. Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering-A systematic review of the literature. Curr Stem Cell Res Ther. 2012;7(4):302–9.

    Article  CAS  PubMed  Google Scholar 

  • Mohal M, Tailor HD, Khan WS. Sources of adult mesenchymal stem cells and their applicability for musculoskeletal applications. Curr Stem Cell Res Ther. 2012;7(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  • Muschler GF, Nitto H, Matsukura Y, Boehm C, Valdevit A, Kambic H, Davros W, Powell K, Easley K. Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orthop Relat Res. 2003;407:102–18.

    Article  Google Scholar 

  • Olmsted EA, Blum JS, Rill D, Yotnda P, Gugala Z, Lindsey RW, Davis AR. Adenovirus-mediated BMP2 expression in human bone marrow stromal cells. J Cell Biochem. 2001;82(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  • Oragui E, Nannaparaju M, Khan WS. The role of bioreactors in tissue engineering for musculoskeletal applications. Open Orthop J. 2011;5:267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone. 1999;25(2 Suppl):5S–9.

    Article  CAS  PubMed  Google Scholar 

  • Partridge KA, Oreffo RO. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tissue Eng. 2004;10(1–2):295–307.

    Article  CAS  PubMed  Google Scholar 

  • Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res. 1999;360:71–86.

    Google Scholar 

  • Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18(9):959–63.

    Article  CAS  PubMed  Google Scholar 

  • Quirk RA, Chan WC, Davies MC, Tendler SJ, Shakesheff KM. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials. 2001;22(8):865–72.

    Article  CAS  PubMed  Google Scholar 

  • Sakkers RJ, Dalmeyer RA, de Wijn JR, van Blitterswijk CA. Use of bone-bonding hydrogel copolymers in bone: an in vitro and in vivo study of expanding PEO-PBT copolymers in goat femora. J Biomed Mater Res. 2000;49(3):312–8.

    Article  CAS  PubMed  Google Scholar 

  • Shekkeris AS, Jaiswal PK, Khan WS. Clinical applications of mesenchymal stem cells in the treatment of fracture non-union and bone defects. Curr Stem Cell Res Ther. 2012;7(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24(24):4353–64.

    Article  CAS  PubMed  Google Scholar 

  • Stewart K, Walsh S, Screen J, Jefferiss CM, Chainey J, Jordan GR, Beresford JN. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J Bone Miner Res. 1999;14(8):1345–56.

    Article  CAS  PubMed  Google Scholar 

  • Thanabalasundaram G, Arumalla N, Tailor HD, Khan WS. Regulation of differentiation of mesenchymal stem cells into musculoskeletal cells. Curr Stem Cell Res Ther. 2012;7(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  • Urist MR. Bone: formation by autoinduction. Science. 1965;150(698):893–9.

    Article  CAS  PubMed  Google Scholar 

  • Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol. 2001;53(11):1427–37.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Razzano P, Grande DA. Gene therapy and tissue engineering in repair of the musculoskeletal system. J Cell Biochem. 2003;88(3):467–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasim S. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, W.S., Pastides, P., Marsh, D. (2016). Clinical Applications of Stem Cells for Bone Repair. In: Pham, P. (eds) Bone and Cartilage Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-40144-7_1

Download citation

Publish with us

Policies and ethics