Skip to main content

Rock Physics Modeling in Conventional Reservoirs

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration
  • 1352 Accesses

Abstract

Seismic reservoir characterization focuses on the interpretation of elastic attributes, such as seismic velocities and impedances, estimated from geophysical data such as surface seismic, crosswell seismic, and well log data. Elastic attributes depend on rock and fluid properties. The discipline of rock physics investigates the physical relations between petrophysical properties of porous rocks and their elastic response. In this chapter, we review the most common rock physics models for conventional hydrocarbon reservoirs. Rock physics models are commonly used to study the effect of variations in porosity, lithology, fluid saturation, and other petrophysical properties in reservoir rocks and the changes in the corresponding elastic and seismic response. These models can then be used to quantitatively interpret geophysical data and build reservoir models conditioned by well log and seismic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aki, K., & Richards, P. G. (1980). Quantitative seismology. North Bay, ON: W.H. Freeman & Co.

    Google Scholar 

  2. Yilmaz, ø. (2001). Seismic data analysis, processing, inversion and interpretation of seismic data (2nd ed., p. 2027). Tulsa, OK: Society of Exploration Geophysicists. ISBN-13: 978–1560800941, ISBN-10: 1560800941.

    Google Scholar 

  3. Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  4. Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21, 41–70.

    Article  Google Scholar 

  5. Raymer, L. L., Hunt, E. R., & Gardner, J. S. (1980). An improved sonic transit time-to-porosity transform: Transactions of SPWLA, Paper P.

    Google Scholar 

  6. Han, D.-H. (1986). Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments: Ph.D. dissertation, Stanford University.

    Google Scholar 

  7. Bourbié, T., Coussy, O., & Zinszner, B. (1987). Acoustics of porous media. Houston: Gulf.

    Google Scholar 

  8. Zimmerman, R. W. (1991). Compressibility of Sandstones. Amsterdam: Elsevier.

    Google Scholar 

  9. Nur, A., Marion, D., & Yin, H. (1991). Wave velocities in sediments. In J. M. Hovem, M. D. Richardson, & R. D. Stoll (Eds.), Shear waves in marine sediments (pp. 131–140). Berlin: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  10. Avseth, P., Mukerji, T., & Mavko, G. (2005). Quantitative seismic interpretation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  11. Dvorkin, J., Gutierrez, M., & Grana, D. (2014). Seismic reflections of rock properties. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  12. Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50, 571–581.

    Article  Google Scholar 

  13. Greenberg, M. L., & Castagna, J. P. (1992). Shear-wave velocity estimation in porous rocks: Theoretical formulation, preliminary verification and applications. Geophysical Prospecting, 40, 195–209.

    Article  Google Scholar 

  14. Vernik, L., Fisher, D., & Bahret, S. (2002). Estimation of net-to-gross from P and S impedance in deepwater turbidites. The Leading Edge, 21, 380–387.

    Article  Google Scholar 

  15. Batzle, M., & Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57, 1396–1408.

    Article  Google Scholar 

  16. Brie, A., Pampuri, F., Marsala, A. F., & Meazza, O. (1995). Shear sonic interpretation in gas-bearing sands. SPE, 30595, 701–710.

    Google Scholar 

  17. Nur, A., Mavko, G., Dvorkin, J., & Gal, D. (1995). Critical porosity: The key to relating physical properties to porosity in rocks. SEG Expanded Abstracts, 878.

    Google Scholar 

  18. Dvorkin, J., Nur, A., & Yin, H. (1994). Effective properties of cemented granular materials. Mechanics of Materials, 18, 351–366.

    Article  Google Scholar 

  19. Dvorkin, J., & Nur, A. (1996). Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics, 61, 1363–1370.

    Article  Google Scholar 

  20. Gal, D., Dvorkin, J., & Nur, A. (1998). A physical model for porosity reduction in sandstones. Geophysics, 63, 454–459.

    Article  Google Scholar 

  21. Kuster, G. T., & Toksöz, M. N. (1974). Velocity and attenuation of seismic waves in two-phase media. Geophysics, 39, 587–618.

    Article  Google Scholar 

  22. Berryman, J. G. (1995). Mixture theories for rock properties. In T. J. Ahrens (Ed.), Rock physics and phase relations: A handbook of physical constants (pp. 205–228). Washington: American Geophysical Union.

    Chapter  Google Scholar 

  23. Mavko, G., Chan, C., & Mukerji, T. (1995). Fluid substitution: Estimating changes in VP without knowing VS. Geophysics, 60, 1750–1755.

    Article  Google Scholar 

  24. Prasad, M., & Manghnani, M. H. (1997). Effects of pore and differential pressure on compressional wave velocity and quality factor in Berea and Michigan sandstones. Geophysics, 62, 1163–1176.

    Article  Google Scholar 

  25. MacBeth, C. (2004). A classification for the pressure-sensitivity properties of a sandstone rock frame. Geophysics, 69, 497–510.

    Article  Google Scholar 

  26. Darling, T. (2005). Well logging and formation evaluation. Amsterdam: Elsevier Inc.

    Google Scholar 

  27. Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists. New York: Springer.

    Book  Google Scholar 

  28. Gomez, C. (2009). Reservoir characterization combining elastic velocities and electrical resistivity measurements: Ph.D. dissertation, Stanford University.

    Google Scholar 

  29. Worthington, P. F. (1985). Evolution of shaley sand concepts in reservoir evaluation. Log Analyst, 26, 23–40.

    Google Scholar 

  30. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation (p. 352). SIAM. ISBN-13: 978–0898715729, ISBN-10: 0898715725.

    Google Scholar 

  31. Doyen, P. (2007). Seismic reservoir characterization: An earth modelling perspective (p. 255). EAGE Publications. ISBN 978-90-73781-77-1.

    Google Scholar 

  32. Buland, A., & Omre, H. (2003). Bayesian linearized AVO inversion. Geophysics, 68, 185–198.

    Article  Google Scholar 

  33. Sen, M. K., & Stoffa, P. L. (2013). Global optimization methods in geophysical inversion. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  34. Chen, J., Hoversten, M., Vasco, D. W., Rubin, Y., & Hou, Z. (2007). Joint inversion of seismic AVO and EM data for gas saturation estimation using a sampling based stochastic model. Geophysics, 72, WA85–WA95.

    Article  Google Scholar 

  35. MacGregor, L. (2012). Integrating seismic CSEM, and well-log data for reservoir characterization. The Leading Edge, 31, 268–277.

    Google Scholar 

  36. Buland, A., & Kolbjørnsen, H. (2012). Bayesian inversion of CSEM and magnetotelluric data. Geophysics, 77, E33–E42.

    Article  Google Scholar 

  37. Grana, D., & Della Rossa, E. (2010). Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics, 75, O21–O37.

    Article  Google Scholar 

  38. Rimstad, K., & Omre, H. (2010). Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics, 75, R93–R108.

    Article  Google Scholar 

  39. Mukerji, T., Jørstad, A., Avseth, P., Mavko, G., & Granli, J. R. (2001). Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics, 66, 988–1001.

    Article  Google Scholar 

  40. Eidsvik, J., Avseth, P., Omre, H., Mukerji, T., & Mavko, G. (2004). Stochastic reservoir characterization using prestack seismic data. Geophysics, 69, 978–993.

    Article  Google Scholar 

  41. Bachrach, R. (2006). Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 71, O53–O63.

    Article  Google Scholar 

  42. Sengupta, M., & Bachrach, R. (2007). Uncertainty in seismic-based pay volume estimation: Analysis using rock physics and Bayesian statistics. The Leading Edge, 24, 184–189.

    Article  Google Scholar 

  43. Spikes, K., Mukerji, T., Dvorkin, J., & Mavko, G. (2008). Probabilistic seismic inversion based on rock-physics models. Geophysics, 72, R87–R97.

    Article  Google Scholar 

  44. Eberhart-Phillips, D., Han, D. H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Grana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grana, D. (2016). Rock Physics Modeling in Conventional Reservoirs. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics