Skip to main content

Discrete Element Modeling of the Role of In Situ Stress on the Interactions Between Hydraulic and Natural Fractures

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration

Abstract

The interaction between HF (hydrofractures) and NF (natural fractures) is a complex-coupled process which involves several physical parameters. Despite numerous previous works, the respective role of in situ stress, natural fracture properties, and orientations is still difficult to assess. In this chapter, a fully hydromechanical coupled numerical model has been used to simulate different three-dimensional configurations. These configurations provide insight into how a natural fracture is mechanically or hydraulically activated depending on well-defined parameters. It has been shown that the natural fracture can be either activated hydraulically without any shear displacement or mechanically activated while not loaded hydraulically. These configurations are controlled at a first-order level by the combination of the in situ differential stress state and the natural fracture orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Britt, L. (2012). Fracture stimulation fundamentals. Journal of Natural Gas Science and Engineering, 8, 34–51.

    Article  Google Scholar 

  2. Gale, J. F., Reed, R. M., & Holder, J. (2007). Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 91(4), 603–622.

    Article  Google Scholar 

  3. Rogers, S., Elmo, D., Dunphy, R., & Bearinger, D. (2010, January). Understanding hydraulic fracture geometry and interactions in the Horn River Basin through DFN and numerical modeling. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers.

    Google Scholar 

  4. Liang, F., Sayed, M., Ghaithan, A.-M., Chang, F. F., & Li, L. (2016). A comprehensive review on proppant technologies. Petroleum, ISSN 2405-6561.

    Google Scholar 

  5. Jeffrey, R. G., Chen, Z. R., Zhang, X., Bunger, A. P., & Mills, K. W. (2015). Measurement and Analysis of Full-Scale Hydraulic Fracture Initiation and Reorientation. Rock Mechanics and Rock Engineering, 48(6), 2497–2512.

    Article  Google Scholar 

  6. Olson, J. E., & Taleghani, A. D. (2009, January). Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.

    Google Scholar 

  7. Neuzil, C. E. (2003). Hydromechanical coupling in geologic processes. Hydrogeology Journal, 11(1), 41–83.

    Article  Google Scholar 

  8. Nagel, N. B., & Zhang, F. (2013). Coupled Numerical Evaluation of the Geomechanical Interactions between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formation. Rock Mech Rock Eng, Springer.

    Google Scholar 

  9. Papachristos, E., Scholtès L., Donzé, F. V., Chareyre, B., & Pourpak, H. (2015). Hydraulic fracturation simulated by a 3D coupled HM-DEM model, 13th International Symposium on Rock Mechanics, ISRM Congress.

    Google Scholar 

  10. Riahi, A., & Damjanac, B. (2013, May). Numerical study of interaction between hydraulic fracture and discrete fracture network. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics.

    Google Scholar 

  11. Kovalyshen, Y., & Detournay, E. (2010). A reexamination of the classical PKN model of hydraulic fracture. Transport in Porous Media, 81(2), 317–339.

    Article  Google Scholar 

  12. Perkins, T. K., & Kern, L. R. (1961). Width of hydraulic fractures. Texas: Journal of Petroleum Technology.

    Google Scholar 

  13. Cundall, P. A., & Strack, O. D. L. (1979). Geotechnique 29, No. 1, 47–65.

    Google Scholar 

  14. Donzé, F. V., Richefeu, V., & Magnier, S. A. (2009). Advances in discrete element method applied to soil, rock and concrete mechanics. State of the art of geotechnical engineering. Electronic Journal of Geotechnical Engineering, 44, 31.

    Google Scholar 

  15. Shi, G. H. (1992). Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Engineering Computations, 9(2), 157–168.

    Article  Google Scholar 

  16. Itasca. (2013). 3DEC, Three Dimensional Distinct Element Code. Version 5.0, Minneapolis.

    Google Scholar 

  17. Kozicki, J., & Donzé, F. V. (2009). Yade-open dem: An open-source software using a discrete element method to simulate granular material. Engineering Computations, 26(7), 786–805.

    Article  MATH  Google Scholar 

  18. Kozicki, J., & Donzé, F. V. (2008). A new open-source software developed for numerical simulations using discrete modeling methods. Computer Methods in Applied Mechanics and Engineering, 197(49), 4429–4443.

    Article  MATH  Google Scholar 

  19. Abbas, S., & Lecampion, B. (2013, May). Initiation and breakdown of an axisymmetric hydraulicfracture transverse to a horizontal wellbore. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics.

    Google Scholar 

  20. Yew, C. H. (1997). Mechanics of hydraulic fracturing. Amsterdam: Elsevier Science Ltd.

    Google Scholar 

  21. Fisher, N. I. (1996). Statistical analysis of circular data. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Cipolla, C. L., Lolon, E. P., Erdle, J. C., & Rubin, B. (2010). Reservoir modeling in shale-gas reservoirs. SPE Reservoir Evaluation & Engineering, 13(04), 638–653.

    Article  Google Scholar 

  23. Damjanac, B., & Cundall, P. (2016). Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs. Computers and Geotechnics, 71, 283–294.

    Article  Google Scholar 

  24. Yaghoubi A., & Zoback M., (2012). Hydraulic fracturing modeling using a discrete fracture network in the Barnett Shale. Stanford Stress and Geomechanics Group. American Geophysical Union, Fall Meeting 2012.

    Google Scholar 

  25. Fu, P., Johnson, S. M., & Carrigan, C. R. (2013). An explicitly coupled hydro‐geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics, 37(14), 2278–2300.

    Article  Google Scholar 

  26. Grasselli, G., Lisjak, A., Mahabadi, O. K., & Tatone, B. S. (2015). Influence of pre-existing discontinuities and bedding planes on hydraulic fracturing initiation. European Journal of Environmental and Civil Engineering, 19(5), 580–597.

    Article  Google Scholar 

  27. Khoei, A. R., Vahab, M., & Hirmand, M. (2015). Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique. International Journal of Fracture, 197, 1–24.

    Article  Google Scholar 

  28. Rahman, M. M. (2009, January). A fully coupled numerical poroelastic model to investigate interaction between induced hydraulic fracture and pre existing natural fracture in a naturally fractured reservoir: potential application in tight gas and geothermal reservoirs. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

    Google Scholar 

  29. Shah, R.K., and D.P. Sekulic. 2003. Fundamentals of heat exchanger design. New York: John Wiley & Son Publisher.

    Book  Google Scholar 

  30. Hesselgreaves, J.E. 2007. Compact heat exchangers: Selection, design and operation. 3rd edition. Pergamon.

    Google Scholar 

Download references

Acknowledgment

This work is supported by TOTAL SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric-Victor Donzé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rorato, R., Donzé, FV., Tsopela, A., Pourpak, H., Onaisi, A. (2016). Discrete Element Modeling of the Role of In Situ Stress on the Interactions Between Hydraulic and Natural Fractures. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics