Skip to main content

Fundamentals of the Hydromechanical Behavior of Multiphase Granular Materials

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration
  • 1284 Accesses

Abstract

The principal aim of this chapter is to describe the hydromechanical behavior of unsaturated soils based on experimental evidence. The unsaturated soils are media in which the pore space is occupied by more than a fluid, typically liquid and gas. They give rise to very characteristic types of geotechnical problem such as: the loss of strength associated with the increase in water content or degree of saturation and the damage to structure caused by the collapse for saturation induced by wetting. An appropriate description of the behavior of unsaturated soils must incorporate these fundamental effects of wetting on strength and deformation. The experimental evidence in terms of stiffness, compressibility, and strength is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Croney, D. (1952). The movement and distribution of water in soils. Geotechnique, 3, 1–16.

    Article  Google Scholar 

  2. Bishop, A. W., Alpan, I., Blight, G. E., & Donald, I. B. (1960). Factors controlling the strength of partly saturated cohesive soils. In Research conference on shear strength of cohesive soils (pp. 503–532). Boulder: ASCE.

    Google Scholar 

  3. Bishop, A. W., & Blight, G. E. (1963). Some aspects of effective stress in saturated and partly saturated soils. Geotechnique, 13, 177–197.

    Article  Google Scholar 

  4. Jennings, J. E. B., & Burland, J. B. (1962). Limitations to the use of effective stresses in partly saturated soils. Geotechnique, 12, 125–144.

    Article  Google Scholar 

  5. Matyas, E. L., & Radhakrishna, H. S. (1968). Volume change characteristics of partially saturated soils. Geotechnique, 18, 432–448.

    Article  Google Scholar 

  6. Coleman, J. D. (1962). Stress strain relations for partly saturated soil. Correspondence. Geotechnique, 12, 348–350.

    Article  Google Scholar 

  7. Fredlund, D. G., & Morgenstern, N. R. (1977). Stress state variables and unsaturated soils. Journal of the Geotechnical Engineering Division, ASCE, 103, 447–466.

    Google Scholar 

  8. Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. New York: Wiley.

    Book  Google Scholar 

  9. Tarantino, A., Mongiovi, L., & Bosco, G. (2000). An experimental investigation on the isotropic stress variables for unsaturated soils. Geotechnique, 50, 275–282.

    Article  Google Scholar 

  10. Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils. Geotechnique, 40, 405–430.

    Article  Google Scholar 

  11. Gens, A., Sánchez, M., & Sheng, D. (2006). On constitutive modelling of unsaturated soils. Acta Geotechnica, 1(3), 137–147.

    Article  Google Scholar 

  12. Sheng. (2011). Review of fundamental principles in modelling unsaturated soil behavior. Computers and Geotechnics 38(6):757–776.

    Google Scholar 

  13. Bolt, G. H. (1976). Soil physics terminology. Int Soc Soil Sci Bull, 49, 16–22.

    Google Scholar 

  14. Gens, A. (2010). Soil-environment interactions in geotechnical engineering. Geotechnique, 60(1), 3–74.

    Article  Google Scholar 

  15. Aitchison GD (1965) Soil properties, shear strength and consolidation. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal 3, pp. 318–321

    Google Scholar 

  16. Taylor, D. W. (1948). Fundamentals of soil mechanics. New York: John Wiley & Sons.

    Google Scholar 

  17. Barbour, S. L. (1998). The soil-water characteristic curve: A historical perspective. Canadian Geotechnical Journal, 35, 873–894.

    Article  Google Scholar 

  18. Ridley, A. M., & Burland, J. B. (1993). A new instrument for the measurement of soil moisture suction. Geotechnique, 43(2), 321–324.

    Article  Google Scholar 

  19. Tarantino, A. (2003). Panel report: Direct measurement of soil water tension. Proc. 3rd Int. Conf. on Unsaturated Soils, Recife.

    Google Scholar 

  20. Cardoso, R., Romero, E., Lima, A., & Ferrari, A. (2007). A comparative study of soil suction measurement using two different high-range psychrometers. Experimental Unsaturated Soil Mechanics, Springer Proceedings in Physics (vol 112, pp. 79–94). Heidelberg, Berlin: Springer.

    Google Scholar 

  21. Casini, F. (2008). Effettidelgradodisaturazionesulcomportamentomeccanicodiunlimo. PhD Thesis, UniversitàdiRoma La Sapienza, Roma.

    Google Scholar 

  22. Casini, F. (2008). Effetti del grado di saturazione sul comportamento meccanico di un limo. PhD thesis, Universita´ degli Studi di Roma La Sapienza, Italy.

    Google Scholar 

  23. Casini, F. (2012). Deformation induced by wetting: A simple model. Canadian Geotechnical Journal, 49, 954–960.

    Article  Google Scholar 

  24. Romero, E. (2013). A microstructural insight into compacted clayey soils and their hydraulic properties. Engineering Geology, 165, 3.

    Article  Google Scholar 

  25. Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521–532.

    Article  Google Scholar 

  26. Romero, E., & Vaunat, J. (2000). Retention curves of deformable clays. In Proceedings of international workshop on unsaturated soils: Experimental evidence and theoretical approaches (pp. 91–106). Trento: Balkema.

    Google Scholar 

  27. Gallipoli, D., Wheeler, S., & Karstunen, M. (2003). Modelling the variation of degree of saturation in a deformable unsaturated soil. Geotechnique, 53(1), 105–112.

    Article  Google Scholar 

  28. Mašín, D. (2010). Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 34, 73–90.

    MATH  Google Scholar 

  29. Khalili, N., & Khabbaz, M. H. (1998). A unique relationship for χ for the determination of the shear strength of unsaturated soils. Geotechnique, 48(5), 681–687.

    Article  Google Scholar 

  30. Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Colorado State University Hydrology Paper, 3, 1–27.

    Google Scholar 

  31. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  32. Nuth, M., & Laloui, L. (2008). Effective stress concept in unsaturated soils: Clarification and validation of a unified framework. Computers and Geotechnics, 32, 771–801.

    MATH  Google Scholar 

  33. Salager, S., Nuth, M., Ferrari, A., & Laloui, L. (2013). Investigation into water retention behaviour of deformable soils. Canadian Geotechnical Journal, 50(2), 200–208.

    Article  Google Scholar 

  34. Romero, E., Della Vecchia, G., & Jommi, C. (2011). An insight into the water retention properties of compacted clayey soils. Geotechnique, 61(4), 313–328.

    Article  Google Scholar 

  35. Otalvaro, I. F., Neto, M. P. C., Delage, P., & Caicedo, B. (2016). Relationship between soil structure and water retention properties in a residual compacted soil. Engineering Geology, 205, 73–80.

    Article  Google Scholar 

  36. Ciervo, F., Casini, F., Papa, M. N., & Rigon, R. (2015). Some remarks on bimodality effects of the hydraulic properties on shear strength of unsaturated soils. Vadoze Zone Journal, 14(9).

    Google Scholar 

  37. Casini, F., Vaunat, J., Romero, E., & Desideri, A. (2012). Consequences on water retention 32 properties of double porosity features in a compacted silt. Acta Geotechnica, 7, 139–150.

    Article  Google Scholar 

  38. Romero, E., & Simms, P. H. (2008). Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotechnical and Geological Engineering, 26(6), 705–727.

    Article  Google Scholar 

  39. Diamond, S. (1970). Pore size distribution in clays. Clays and Clay Minerals, 18, 7–23.

    Article  Google Scholar 

  40. Penumadu, D., & Dean, J. (2000). Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry. Canadian Geotechnical Journal, 37, 393–405.

    Article  Google Scholar 

  41. Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources Research, 30(2), 211–223.

    Article  Google Scholar 

  42. Askarinejad, A., Beck, A., Casini, F., & Springman, S. M. (2012). Unsaturated hydraulic conductivity of a silty sand with the instantaneous profile method. Unsaturated Soils: Research and Applications, 2, 215–220.

    Article  Google Scholar 

  43. Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear. International Conference on Soil Mechanics and Foundation Engineering (pp. 54–55) Cambridge, MA: Harvard University Press.

    Google Scholar 

  44. Suklje, L. (1969). Rheological aspects of soil mechanics. New York: Wiley.

    Google Scholar 

  45. Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic soil. Journal of Applied Physics, 26(2), 182–185.

    Article  MathSciNet  MATH  Google Scholar 

  46. Skempton, A. W. (1960). Effective stress in soils, concrete and rocks. Pore pressure and suction in soils (pp. 4–16). Butterworths: London.

    Google Scholar 

  47. Nuth, M., & Laloui, L. (2008). Advances in modelling hysteretic water retention curve in deformable soils. Computers and Geotechnics, 35, 835–844.

    Article  MATH  Google Scholar 

  48. Jommi, C. (2000). Remarks on the constitutive modelling of unsaturated soils. In A. Tarantino & C. Mancuso (Eds.), Experimental evidence and theoretical approaches in unsaturated soils. Proceedings of the International Workshop on Unsaturated Soils (pp. 139–153) Trento. Balkema, Rotterdam.

    Google Scholar 

  49. Bishop, A. W. (1959). The principle of effective stress. Tecnisk Ukeblad, 39, 859–863.

    Google Scholar 

  50. Tamagnini, R. (2004). An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Geotechnique, 54(3), 223–228.

    Article  Google Scholar 

  51. Alonso, E. E., Pereira, J. M., Vaunat, J., & Olivella, S. (2010). A microstructurally based effective stress for unsaturated soils. Géotechnique, 60(12), 913–925. doi:10.1680/geot.8.P.002.

    Article  Google Scholar 

  52. Viggiani, G., & Atkinson, J. H. (1995). Stiffness of fine-grained soils at very small strains. Geotechnique, 45, 249–265.

    Article  Google Scholar 

  53. Atkinson, J. H., & Salfors, G. (1991). Experimental determination of soil properties. In Proc. 10 th ECSMFE (Vol. 3, pp. 915–956). General report session 1.

    Google Scholar 

  54. Mair, M. J. (1993). Developments in geotechnical engineering research: application to tunnels and deep excavations. Proceedings of Institution of Civil Engineers (pp. 27–41). Unwin Memorial Lecture 1992.

    Google Scholar 

  55. Benz, T. (2007). Small-strain stiffness of soils and its numerical consequences. PhD Thesis Universitat Stuttgart.

    Google Scholar 

  56. Rampello, S., Silvestri, F., & Viggiani, G. (1994). The dependence of small strain stiff-ness on stress state and history for fined grained soils: The example of Vallericca clay. In Proceeding of the First International Symposium on Pre-failure Defomation of Geomaterials (pp. 273–278). Sapporo.

    Google Scholar 

  57. Casini, F., Vassallo, R., Mancuso, C., & Desideri, A. (2007). Interpretation of the Behaviour of Compacted Soils Using Cam-Clay Extended to Unsaturated Conditions. In: Theoretical and numerical unsaturated soil mechanics. Springer Proceedings in Physics (Vol. 113(1), pp. 29-36).

    Google Scholar 

  58. Vassallo, R., Mancuso, C., & Vinale, F. (2007). Effects of net stress and suction history on the small strain stiffness of a compacted clayey silt. Canadian Geotechnical Journal, 44(4), 447–462.

    Article  Google Scholar 

  59. Casini, F., Vassallo, R., Mancuso, C., & Desideri, A. (2008). Application to a compacted soil of a Cam Clay model extended to unsaturated conditions. In D. G. Toll, C. E. Augarde, D. Gallipoli, & S. J. Wheeler (Eds.), Unsaturated Soils. Advances in Geo-Engineering Proceedings of the 1st European Conference (pp. 609–615). Durham, UK: E-UNSAT 2008.

    Google Scholar 

  60. Casini, F., Vaunat, J., & Romero, E. (2013). A microstructural model on the link between change in pore size distribution and wetting induced deformation in a compacted silt. Poromechanics V. pp. 1309–1313.

    Google Scholar 

  61. Vassallo, R. (2003). Comportamento di terreni costipati non saturi a piccole, medie e grandi deformazioni. PhD tesi, University of Napoli Federico II, Naples, Italy.

    Google Scholar 

  62. Casini, F., Minder, P., & Springman, S. M. (2011). Shear strength of an unsaturated silty sand. In Unsaturated Soils—Proceedings of the 5th International Conference on Unsaturated Soils (Vol. 1, pp. 211–216) Spain: Barcelona.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Casini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Casini, F. (2016). Fundamentals of the Hydromechanical Behavior of Multiphase Granular Materials. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics