Skip to main content

Understanding Asphaltene Aggregation and Precipitation Through Theoretical and Computational Studies

  • Chapter
  • First Online:
New Frontiers in Oil and Gas Exploration

Abstract

Asphaltenes are known to cause serious problems during the processing of petroleum compounds due to their aggregation and precipitation behaviors. Despite the significant amount of experimental works that have been performed, large debates still exist in literature. Parallel with experimental work, great efforts have been spent from theoretical and computational perspectives to predict asphaltene behaviors under given conditions, to provide atomic/molecular information on their aggregation as well as precipitation, and to further shed lights on existing debates. This chapter presents a detailed review of previous theoretical and computational works on asphaltene aggregation and precipitation. Theoretical models developed, systems simulated, and the key findings are summarized; and discrepancies among those works are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CCC:

Critical cluster concentration

CMC:

Critical micelle concentration

CNAC:

Critical nanoaggregation concentration

CPA-EoS:

Cubic-Plus-Association EoS

EoS:

Equation of state

L2MS:

Laser desorption laser ionization mass spectrometry

MD:

Molecular dynamics

MM:

Molecular mechanics

MW:

Molecular weight

NMR:

Nuclear magnetic resonance

PA:

Polyaromatic

PC-SAFT EoS:

Perturbed-chain SAFT-EoS

PME:

Potential of mean force

PR-EoS:

Peng-Robinson EoS

QM:

Quantum mechanics

RICO:

Ruthenium-ion-catalyzed oxidation

SAFT EoS:

Statistical Associating Fluid Theory EoS

SAFT-VR EoS:

SAFT-EoS for potentials of variable range

SARA:

Saturate aromatic, resin, and asphaltene sc-CO2 supercritical carbon dioxide

XANES:

X-ray absorption near-edge structure

XPS:

X-ray photoelectron spectroscopy

References

  1. Hall, C. A., & Day, J. W., Jr. (2009). Revisiting the limits to growth after peak oil. American Scientist, 97, 230–237.

    Article  Google Scholar 

  2. David, A. (1973). Asphaltene flocculation during solvent stimulation of heavy oils. AIChE (American Institute of Chemical Engineers) Symposium Series, 69, 56–61.

    Google Scholar 

  3. Lichaa, P. (1977). Asphaltene deposition problem in Venezuela crudes-usage of asphaltenes in emulsion stability. Oil Sands, 609.

    Google Scholar 

  4. Ali Mansoori, G. (1997). Modeling of asphaltene and other heavy organic depositions. Journal of Petroleum Science and Engineering, 17, 101–111.

    Article  Google Scholar 

  5. Gaspar, A., Zellermann, E., Lababidi, S., Reece, J., & Schrader, W. (2012). Characterization of saturates, aromatics, resins, and asphaltenes heavy crude oil fractions by atmospheric pressure laser ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels, 26, 3481–3487.

    Article  Google Scholar 

  6. Jewell, D., Weber, J., Bunger, J., Plancher, H., & Latham, D. (1972). Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Analytical Chemistry, 44, 1391–1395.

    Article  Google Scholar 

  7. Mitchell, D. L., & Speight, J. G. (1973). The solubility of asphaltenes in hydrocarbon solvents. Fuel, 52, 149–152.

    Article  Google Scholar 

  8. Permsukarome, P., Chang, C., & Fogler, H. S. (1997). Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Industrial and Engineering Chemistry Research, 36, 3960–3967.

    Article  Google Scholar 

  9. Speight, J. G., Long, R. B., Trowbridge, T. D., & Linden, N. (1982). On the definition of asphaltenes. American Chemical Society, Division of Petroleum Chemistry, 27, 268–275.

    Google Scholar 

  10. Kokal, S. L., Sayegh, S. G., & Asphaltenes (1995). The cholesterol of petroleum. In 9th SPE Middle East Oil Show Conference, Manama, Bahrain, March 11−14, 1995; Society of Petroleum Engineers: Richardson, Texas, SPE 29787.

    Google Scholar 

  11. de la Cruz, M., José, L., Argüelles-Vivas, F. J., Matías-Pérez, V., Durán-Valencia, C. de l. A., & López-Ramírez, S. (2009). Asphaltene-induced precipitation and deposition during pressure depletion on a porous medium: an experimental investigation and modeling approach. Energy and Fuels, 23, 5611–5625.

    Article  Google Scholar 

  12. Vafaie-Sefti, M., & Mousavi-Dehghani, S. (2006). Application of association theory to the prediction of asphaltene deposition: Deposition due to natural depletion and miscible gas injection processes in petroleum reservoirs. Fluid Phase Equilibria, 247, 182–189.

    Article  Google Scholar 

  13. Cosultchi, A., Rossbach, P., & Hernández‐Calderon, I. (2003). XPS analysis of petroleum well tubing adherence. Surface and Interface Analysis, 35, 239–245.

    Article  Google Scholar 

  14. Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212, 17–60.

    Article  Google Scholar 

  15. Gawel, I., Bociarska, D., & Biskupski, P. (2005). Effect of asphaltenes on hydroprocessing of heavy oils and residua. Applied Catalysis A: General, 295, 89–94.

    Article  Google Scholar 

  16. Park, S. J., & Ali Mansoori, G. (1988). Aggregation and deposition of heavy organics in petroleum crudes. Energy Sources, 10, 109–125.

    Article  Google Scholar 

  17. Andersen, S. I., & Birdi, K. S. (1991). Aggregation of asphaltenes as determined by calorimetry. Journal of Colloid and Interface Science, 142, 497–502.

    Article  Google Scholar 

  18. Leon, O., Rogel, E., Espidel, J., & Torres, G. (2000). Asphaltenes: structural characterization, self-association, and stability behavior. Energy and Fuels, 14, 6–10.

    Article  Google Scholar 

  19. Speight, J., Wernick, D., Gould, K., Overfield, R., & Rao, B. (1985). Molecular weight and association of asphaltenes: A critical review. Oil & Gas Science and Technology, 40, 51–61.

    Google Scholar 

  20. Strausz, O. P., Safarik, I., Lown, E., & Morales-Izquierdo, A. (2008). A critique of asphaltene fluorescence decay and depolarization-based claims about molecular weight and molecular architecture. Energy and Fuels, 22, 1156–1166.

    Article  Google Scholar 

  21. Strausz, O. P., Mojelsky, T. W., Faraji, F., Lown, E. M., & Peng, P. (1999). Additional structural details on Athabasca asphaltene and their ramifications. Energy and Fuels, 13, 207–227.

    Article  Google Scholar 

  22. Mullins, O. C., Sabbah, H., Eyssautier, J., Pomerantz, A. E., Barré, L., Andrews, A. B., et al. (2012). Advances in asphaltene science and the Yen–Mullins model. Energy and Fuels, 26, 3986–4003.

    Article  Google Scholar 

  23. Strausz, O. P., Mojelsky, T. W., & Lown, E. M. (1992). The molecular structure of asphaltene: an unfolding story. Fuel, 71, 1355–1363.

    Article  Google Scholar 

  24. Dickie, J. P., & Yen, T. F. (1967). Macrostructures of the asphaltic fractions by various instrumental methods. Analytical Chemistry, 39, 1847–1852.

    Article  Google Scholar 

  25. Mullins, O. C. (2011). The asphaltenes. Annual Review of Analytical Chemistry, 4, 393–418.

    Article  Google Scholar 

  26. Sabbah, H., Morrow, A. L., Pomerantz, A. E., Mullins, O. C., Tan, X., Gray, M. R., et al. (2010). Comparing laser desorption/laser ionization mass spectra of asphaltenes and model compounds. Energy and Fuels, 24, 3589–3594.

    Article  Google Scholar 

  27. Sabbah, H., Morrow, A. L., Pomerantz, A. E., & Zare, R. N. (2011). Evidence for island structures as the dominant architecture of asphaltenes. Energy and Fuels, 25, 1597–1604.

    Article  Google Scholar 

  28. Hortal, A. R., Hurtado, P., Martínez-Haya, B., & Mullins, O. C. (2007). Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments. Energy and Fuels, 21, 2863–2868.

    Article  Google Scholar 

  29. Groenzin, H., & Mullins, O. C. (1999). Asphaltene molecular size and structure. Journal of Physical Chemistry A, 103, 11237–11245.

    Article  Google Scholar 

  30. Groenzin, H., & Mullins, O. C. (2000). Molecular size and structure of asphaltenes from various sources. Energy and Fuels, 14, 677–684.

    Article  Google Scholar 

  31. Andrews, A. B., Guerra, R. E., Mullins, O. C., & Sen, P. N. (2006). Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. Journal of Physical Chemistry A, 110, 8093–8097.

    Article  Google Scholar 

  32. Bergmann, U., Groenzin, H., Mullins, O. C., Glatzel, P., Fetzer, J., & Cramer, S. (2003). Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes. Chemical Physics Letters, 369, 184–191.

    Article  Google Scholar 

  33. Pinkston, D. S., Duan, P., Gallardo, V. A., Habicht, S. C., Tan, X., Qian, K., et al. (2009). Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels, 23, 5564–5570.

    Article  Google Scholar 

  34. Qian, K., Edwards, K. E., Siskin, M., Olmstead, W. N., Mennito, A. S., Dechert, G. J., et al. (2007). Desorption and ionization of heavy petroleum molecules and measurement of molecular weight distributions. Energy and Fuels, 21, 1042–1047.

    Article  Google Scholar 

  35. Lisitza, N. V., Freed, D. E., Sen, P. N., & Song, Y. (2009). Study of Asphaltene Nanoaggregation by Nuclear Magnetic Resonance (NMR). Energy and Fuels, 23, 1189–1193.

    Article  Google Scholar 

  36. Bouhadda, Y., Bormann, D., Sheu, E., Bendedouch, D., Krallafa, A., & Daaou, M. (1855–1864). Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel, 2007, 86.

    Google Scholar 

  37. Payzant, J., Rubinstein, I., Hogg, A., & Strausz, O. (1979). Field-ionization mass spectrometry: application to geochemical analysis. Geochimica et Cosmochimica Acta, 43, 1187–1193.

    Article  Google Scholar 

  38. Rubinstein, I., & Strausz, O. (1979). Thermal treatment of the Athabasca oil sand bitumen and its component parts. Geochimica et Cosmochimica Acta, 43, 1887–1893.

    Article  Google Scholar 

  39. Rubinstein, I., Spyckerelle, C., & Strausz, O. (1979). Pyrolysis of asphaltenes: a source of geochemical information. Geochimica et Cosmochimica Acta, 43, 1–6.

    Article  Google Scholar 

  40. Calemma, V., Rausa, R., D’Anton, P., & Montanari, L. (1998). Characterization of asphaltenes molecular structure. Energy and Fuels, 12, 422–428.

    Article  Google Scholar 

  41. Ferris, S., Black, E., & Clelland, J. (1967). Aromatic structure in asphalt fractions. Industrial and Engineering Chemistry Product Research and Development, 6, 127–132.

    Article  Google Scholar 

  42. Su, Y., Artok, L., Murata, S., & Nomura, M. (1998). Structural analysis of the asphaltene fraction of an arabian mixture by a ruthenium-ion-catalyzed oxidation reaction. Energy and Fuels, 12, 1265–1271.

    Article  Google Scholar 

  43. Murgich, J., Abanero, J. A., & Strausz, O. P. (1999). Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand. Energy and Fuels, 13, 278–286.

    Article  Google Scholar 

  44. Artok, L., Su, Y., Hirose, Y., Hosokawa, M., Murata, S., & Nomura, M. (1999). Structure and reactivity of petroleum-derived asphaltene. Energy and Fuels, 13, 287–296.

    Article  Google Scholar 

  45. Siskin, M., Kelemen, S., Eppig, C., Brown, L., & Afeworki, M. (2006). Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking. Energy and Fuels, 20, 1227–1234.

    Article  Google Scholar 

  46. Gray, M. R. (2003). Consistency of asphaltene chemical structures with pyrolysis and coking behavior. Energy and Fuels, 17, 1566–1569.

    Article  Google Scholar 

  47. Karimi, A., Qian, K., Olmstead, W. N., Freund, H., Yung, C., & Gray, M. R. (2011). Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis. Energy and Fuels, 25, 3581–3589.

    Article  Google Scholar 

  48. Ralston, C. Y., Mitra-Kirtley, S., & Mullins, O. C. (1996). Small population of one to three fused-aromatic ring moieties in asphaltenes. Energy and Fuels, 10, 623–630.

    Article  Google Scholar 

  49. Buenrostro-Gonzalez, E., Groenzin, H., Lira-Galeana, C., & Mullins, O. C. (2001). The overriding chemical principles that define asphaltenes. Energy and Fuels, 15, 972–978.

    Article  Google Scholar 

  50. Groenzin, H., Mullins, O. C., Eser, S., Mathews, J., Yang, M., & Jones, D. (2003). Molecular size of asphaltene solubility fractions. Energy and Fuels, 17, 498–503.

    Article  Google Scholar 

  51. Badre, S., Carla Goncalves, C., Norinaga, K., Gustavson, G., & Mullins, O. C. (2006). Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen. Fuel, 85, 1–11.

    Article  Google Scholar 

  52. Mullins, O. (2009). C. Rebuttal to Strausz et al. regarding time-resolved fluorescence depolarization of asphaltenes. Energy and Fuels, 23, 2845–2854.

    Article  Google Scholar 

  53. Nalwaya, V., Tantayakom, V., Piumsomboon, P., & Fogler, S. (1999). Studies on asphaltenes through analysis of polar fractions. Industrial and Engineering Chemistry Research, 38, 964–972.

    Article  Google Scholar 

  54. Kaminski, T. J., Fogler, H. S., Wolf, N., Wattana, P., & Mairal, A. (2000). Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics. Energy and Fuels, 14, 25–30.

    Article  Google Scholar 

  55. Fish, R. H., Komlenic, J. J., & Wines, B. K. (1984). Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size-exclusion liquid chromatography/graphite furnace atomic absorption spectrometry. Analytical Chemistry, 56, 2452–2460.

    Article  Google Scholar 

  56. Ancheyta, J., Centeno, G., Trejo, F., Marroquin, G., Garcia, J., Tenorio, E., et al. (2002). Extraction and characterization of asphaltenes from different crude oils and solvents. Energy and Fuels, 16, 1121–1127.

    Article  Google Scholar 

  57. George, G. N., & Gorbaty, M. L. (1989). Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds. Journal of the American Chemical Society, 111, 3182–3186.

    Article  Google Scholar 

  58. Waldo, G. S., Mullins, O. C., Penner-Hahn, J. E., & Cramer, S. (1992). Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy. Fuel, 71, 53–57.

    Article  Google Scholar 

  59. Kelemen, S., George, G., & Gorbaty, M. (1990). Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach. Fuel, 69, 939–944.

    Article  Google Scholar 

  60. Mitra-Kirtley, S., Mullins, O. C., Van Elp, J., George, S. J., Chen, J., & Cramer, S. P. (1993). Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. Journal of the American Chemical Society, 115, 252–258.

    Article  Google Scholar 

  61. Desando, M. A., & Ripmeester, J. A. (2002). Chemical derivatization of Athabasca oil sand asphaltene for analysis of hydroxyl and carboxyl groups via nuclear magnetic resonance spectroscopy. Fuel, 81, 1305–1319.

    Article  Google Scholar 

  62. Moschopedis, S. E., & Speight, J. G. (1976). Oxygen functions in asphaltenes. Fuel, 55, 334–336.

    Article  Google Scholar 

  63. Ignasiak, T., Strausz, O. P., & Montgomery, D. S. (1977). Oxygen distribution and hydrogen bonding in Athabasca asphaltene. Fuel, 56, 359–365.

    Article  Google Scholar 

  64. Mullins, O. C. (2010). The modified Yen model. Energy and Fuels, 24, 2179–2207.

    Article  Google Scholar 

  65. Yen, T. (1974). Structure of petroleum asphaltene and its significance. Energy Sources, 1, 447–463.

    Article  Google Scholar 

  66. Andreatta, G., Goncalves, C. C., Buffin, G., Bostrom, N., Quintella, C. M., Arteaga-Larios, F., et al. (2005). Nanoaggregates and structure-function relations in asphaltenes. Energy and Fuels, 19, 1282–1289.

    Article  Google Scholar 

  67. Zeng, H., Song, Y., Johnson, D. L., & Mullins, O. C. (2009). Critical nanoaggregate concentration of asphaltenes by direct-current (DC) electrical conductivity. Energy and Fuels, 23, 1201–1208.

    Article  Google Scholar 

  68. Andersen, S. I., del Rio, J. M., Khvostitchenko, D., Shakir, S., & Lira-Galeana, C. (2001). Interaction and solubilization of water by petroleum asphaltenes in organic solution. Langmuir, 17, 307–313.

    Article  Google Scholar 

  69. Evdokimov, I., Eliseev, N. Y., & Akhmetov, B. (2003). Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy: I. Structure of the absorbance spectrum. Journal of Petroleum Science and Engineering, 37, 135–143.

    Article  Google Scholar 

  70. Evdokimov, I., Eliseev, N. Y., & Akhmetov, B. (2003). Assembly of asphaltene molecular aggregates as studied by near-UV/visible spectroscopy: II. Concentration dependencies of absorptivities. Journal of Petroleum Science and Engineering, 37, 145–152.

    Article  Google Scholar 

  71. Hoepfner, M. P., & Fogler, H. S. (2013). Multiscale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir, 29, 15423–15432.

    Article  Google Scholar 

  72. Tanaka, R., Hunt, J. E., Winans, R. E., Thiyagarajan, P., Sato, S., & Takanohashi, T. (2003). Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering. Energy and Fuels, 17, 127–134.

    Article  Google Scholar 

  73. Gawrys, K. L., & Kilpatrick, P. K. (2005). Asphaltenic aggregates are polydisperse oblate cylinders. Journal of Colloid and Interface Science, 288, 325–334.

    Article  Google Scholar 

  74. Eyssautier, J., Levitz, P., Espinat, D., Jestin, J., Gummel, J., Grillo, I., et al. (2011). Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. Journal of Physical Chemistry B, 115, 6827–6837.

    Article  Google Scholar 

  75. Seki, H., & Kumata, F. (2000). Structural change of petroleum asphaltenes and resins by hydrodemetallization. Energy and Fuels, 14, 980–985.

    Article  Google Scholar 

  76. Soorghali, F., Zolghadr, A., & Ayatollahi, S. (2014). Effect of resins on asphaltene deposition and the changes of surface properties at different pressures: A microstructure study. Energy and Fuels, 28, 2415–2421.

    Article  Google Scholar 

  77. González, G., Neves, G. B. M., Saraiva, S. M., Lucas, E. F., & Anjos de Sousa, M. d. (2003). Electrokinetic characterization of asphaltenes and the asphaltenes-resins interaction. Energy and Fuels, 17, 879–886.

    Article  Google Scholar 

  78. Mullins, O. C., Betancourt, S. S., Cribbs, M. E., Dubost, F. X., Creek, J. L., Andrews, A. B., et al. (2007). The colloidal structure of crude oil and the structure of oil reservoirs. Energy and Fuels, 21, 2785–2794.

    Article  Google Scholar 

  79. Sedghi, M., & Goual, L. (2009). Role of resins on asphaltene stability. Energy and Fuels, 24, 2275–2280.

    Article  Google Scholar 

  80. Breure, B., Subramanian, D., Leys, J., Peters, C. J., & Anisimov, M. A. (2012). Modeling asphaltene aggregation with a single compound. Energy and Fuels, 27, 172–176.

    Article  Google Scholar 

  81. Tan, X., Fenniri, H., & Gray, M. R. (2007). Pyrene derivatives of 2, 2′-Bipyridine as models for asphaltenes: synthesis, characterization, and supramolecular organization. Energy and Fuels, 22, 715–720.

    Article  Google Scholar 

  82. Gray, M. R., Tykwinski, R. R., Stryker, J. M., & Tan, X. (2011). Supramolecular assembly model for aggregation of petroleum asphaltenes. Energy and Fuels, 25, 3125–3134.

    Article  Google Scholar 

  83. Murgich, J. (2002). Intermolecular forces in aggregates of asphaltenes and resins. Petroleum Science and Technology, 20, 983–997.

    Article  Google Scholar 

  84. Tan, X., Fenniri, H., & Gray, M. R. (2009). Water enhances the aggregation of model asphaltenes in solution via hydrogen bonding. Energy and Fuels, 23, 3687–3693.

    Article  Google Scholar 

  85. Stoyanov, S. R., Yin, C., Gray, M. R., Stryker, J. M., Gusarov, S., & Kovalenko, A. (2010). Computational and experimental study of the structure, binding preferences, and spectroscopy of nickel (II) and vanadyl porphyrins in petroleum. Journal of Physical Chemistry B, 114, 2180–2188.

    Article  Google Scholar 

  86. Rogel, E. (1928–1937). Asphaltene aggregation: a molecular thermodynamic approach. Langmuir, 2002, 18.

    Google Scholar 

  87. Rogel, E. (2004). Thermodynamic modeling of asphaltene aggregation. Langmuir, 20, 1003–1012.

    Article  Google Scholar 

  88. Rogel, E. (2008). Molecular thermodynamic approach to the formation of mixed asphaltene−resin aggregates. Energy and Fuels, 22, 3922–3929.

    Article  Google Scholar 

  89. Agrawala, M., & Yarranton, H. W. (2001). An asphaltene association model analogous to linear polymerization. Industrial and Engineering Chemistry Research, 40, 4664–4672.

    Article  Google Scholar 

  90. Zhang, L., Shi, Q., Zhao, C., Zhang, N., Chung, K. H., Xu, C., et al. (2013). Hindered stepwise aggregation model for molecular weight determination of heavy petroleum fractions by vapor pressure osmometry (VPO). Energy and Fuels, 27, 1331–1336.

    Article  Google Scholar 

  91. Zhang, L., Zhao, S., Xu, Z., Chung, K. H., Zhao, C., Zhang, N., et al. (2014). Molecular weight and aggregation of heavy petroleum fractions measured by vapor pressure osmometry and hindered stepwise aggregation model. Energy and Fuels, 28, 6179–6187.

    Article  Google Scholar 

  92. Acevedo, S., Caetano, M., Ranaudo, M. A., & Jaimes, B. (2011). Simulation of asphaltene aggregation and related properties using an equilibrium-based mathematical model. Energy and Fuels, 25, 3544–3551.

    Article  Google Scholar 

  93. Andersen, S. I., & Speight, J. G. (1999). Thermodynamic models for asphaltene solubility and precipitation. Journal of Petroleum Science and Engineering, 22, 53–66.

    Article  Google Scholar 

  94. Hirschberg, A., DeJong, L., Schipper, B., & Meijer, J. (1984). Influence of temperature and pressure on asphaltene flocculation. Society of Petroleum Engineers Journal, 24, 283–293.

    Article  Google Scholar 

  95. Leontaritis, K., & Mansoori, G. (1987). Asphaltene flocculation during oil production and processing: A thermodynamic colloidal model. In Proceedings of the SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb 4−5 1987; Society of Petroleum Engineers: Richardson, Texas. SPE 16258.

    Google Scholar 

  96. Flory, P. J. (1942). Thermodynamics of high polymer solutions. Journal of Chemical Physics, 10, 51–61.

    Article  Google Scholar 

  97. Huggins, M. L. (1941). Solutions of long chain compounds. Journal of Chemical Physics, 9, 440–440.

    Article  Google Scholar 

  98. Victorov, A. I., & Firoozabadi, A. (1996). Thermodynamic micellizatin model of asphaltene precipitation from petroleum fluids. AICHE Journal, 42, 1753–1764.

    Article  Google Scholar 

  99. Pan, H., & Firoozabadi, A. (1998). Thermodynamic micellization model for asphaltene aggregation and precipitation in petroleum fluids. SPE Production & Facilities, 13, 118–127.

    Article  Google Scholar 

  100. Hinze, W. L., & Pramauro, E. (1993). A critical review of surfactant-mediated phase separations (cloud-point extractions): Theory and applications. Critical Reviews in Analytical Chemistry, 24, 133–177.

    Article  Google Scholar 

  101. Peng, D., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, 15, 59–64.

    Article  Google Scholar 

  102. Ashoori, S., Shahsavani, B., Ahmadi, M. A., & Rezaei, A. (2014). Developing thermodynamic micellization approach to model asphaltene precipitation behavior. Journal of Dispersion Science and Technology, 35, 1325–1338.

    Article  Google Scholar 

  103. Wu, J., Prausnitz, J. M., & Firoozabadi, A. (1998). Molecular‐thermodynamic framework for asphaltene‐oil equilibria. AICHE Journal, 44, 1188–1199.

    Article  Google Scholar 

  104. Victorov, A. I., & Smirnova, N. A. (1998). Thermodynamic model of petroleum fluids containing polydisperse asphaltene aggregates. Industrial and Engineering Chemistry Research, 37, 3242–3251.

    Article  Google Scholar 

  105. Victorov, A. I., & Smirnova, N. A. (1999). Description of asphaltene polydispersity and precipitation by means of thermodynamic model of self-assembly. Fluid Phase Equilibria, 158, 471–480.

    Article  Google Scholar 

  106. Scott, R., & Hildebrand, J. (1951). The solubility of nonelectrolytes. New York: Reinhold.

    Google Scholar 

  107. Correra, S., & Donaggio, F. (2000). Onset-constrained colloidal asphaltene model. In Proceedings of the International Symposium on Formation Damage, Lafayette, LA, Feb 23–24 2000; Society of Petroleum Engineers: Richardson, Texas; SPE 58724.

    Google Scholar 

  108. Correra, S., & Merino-Garcia, D. (2007). Simplifying the thermodynamic modeling of asphaltenes in upstream operations. Energy and Fuels, 21, 1243–1247.

    Article  Google Scholar 

  109. Merino‐Garcia, D., & Correra, S. (2007). A shortcut application of a Flory‐like model to Asphaltene precipitation. Journal of Dispersion Science and Technology, 28, 339–347.

    Article  Google Scholar 

  110. Burke, N. E., Hobbs, R. E., & Kashou, S. F. (1990). Measurement and Modeling of Asphaltene Precipitation (includes associated paper 23831). Journal of Petroleum Technology, 42, 1,440–1,446.

    Article  Google Scholar 

  111. Novosad, Z., & Costain, T. (1990). Experimental and modeling studies of asphaltene equilibria for a reservoir under CO2 injection. In Proceedings of the 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA, Sept 23−26 1990; Society of Petroleum Engineers: Richardson, Texas; SPE 20530.

    Google Scholar 

  112. Hirschberg, A., & Hermans, L. (1984) Asphaltene phase behavior: A molecular thermodynamic model, Presented at International Symposium on Characterization of Heavy Crude Oils and Petroleum Residues, Lyon, France, June15–17; Editions Technip, 492–497.

    Google Scholar 

  113. Kawanaka, S., Park, S., & Mansoori, G. (1991). Organic deposition from reservoir fluids: a thermodynamic predictive technique. SPE Reservoir Engineering, 6, 185–192.

    Article  Google Scholar 

  114. Scott, R. L., & Magat, M. (1945). The Thermodynamics of High‐Polymer Solutions: I. The Free Energy of Mixing of Solvents and Polymers of Heterogeneous Distribution. Journal of Chemical Physics, 13, 172–177.

    Article  Google Scholar 

  115. Manshad, A. K., & Edalat, M. (2008). Application of continuous polydisperse molecular thermodynamics for modeling asphaltene precipitation in crude oil systems. Energy and Fuels, 22, 2678–2686.

    Article  Google Scholar 

  116. Browarzik, D., Laux, H., & Rahimian, I. (1999). Asphaltene flocculation in crude oil systems. Fluid Phase Equilibria, 154, 285–300.

    Article  Google Scholar 

  117. Browarzik, C., & Browarzik, D. (2005). Modeling the onset of asphaltene flocculation at high pressure by an association model. Petroleum Science and Technology, 23, 795–810.

    Article  Google Scholar 

  118. Browarzik, D., Kabatek, R., Kahl, H., & Laux, H. (2002). Flocculation of asphaltenes at high pressure. II. Calculation of the onset of flocculation. Petroleum Science and Technology, 20, 233–249.

    Article  Google Scholar 

  119. Yarranton, H. W., & Masliyah, J. H. (1996). Molar mass distribution and solubility modeling of asphaltenes. AICHE Journal, 42, 3533–3543.

    Article  Google Scholar 

  120. Nor-Azian, N., & Adewumi, M. (1993). Development of asphaltene phase equilibria predictive model. In Proceedings of the Eastern Regional Conference and Exhibition of the SPE, Pittsburgh, Pennsylvania, Nov 2−4, 1993; Society of Petroleum Engineers:Richardson, Texas; SPE 26905.

    Google Scholar 

  121. Alboudwarej, H., Akbarzadeh, K., Beck, J., Svrcek, W. Y., & Yarranton, H. W. (2003). Regular solution model for asphaltene precipitation from bitumens and solvents. AICHE Journal, 49, 2948–2956.

    Article  Google Scholar 

  122. Akbarzadeh, K., Dhillon, A., Svrcek, W. Y., & Yarranton, H. W. (2004). Methodology for the characterization and modeling of asphaltene precipitation from heavy oils diluted with n-alkanes. Energy and Fuels, 18, 1434–1441.

    Article  Google Scholar 

  123. Wiehe, I. A., Yarranton, H. W., Akbarzadeh, K., Rahimi, P. M., & Teclemariam, A. (2005). The paradox of asphaltene precipitation with normal paraffins. Energy and Fuels, 19, 1261–1267.

    Article  Google Scholar 

  124. Tharanivasan, A. K., Yarranton, H. W., & Taylor, S. D. (2010). Application of a Regular Solution-Based Model to Asphaltene Precipitation from Live Oils. Energy and Fuels, 25, 528–538.

    Article  Google Scholar 

  125. Cimino, R., Correra, S., Sacomani, P., & Carniani, C. (1995). Thermodynamic modelling for prediction of asphaltene deposition in live oils. In The SPE International Symposium on Oilfield Chemistry, San Antonio, Texas, Feb 14-17, 1995; Society of Petroleum Engineers: Richardson, Texas; SPE 28993.

    Google Scholar 

  126. Wang, J., & Buckley, J. (2001). A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy and Fuels, 15, 1004–1012.

    Article  Google Scholar 

  127. Buckley, J., Hirasaki, G., Liu, Y., Von Drasek, S., Wang, J., & Gill, B. (1998). Asphaltene precipitation and solvent properties of crude oils. Petroleum Science and Technology, 16, 251–285.

    Article  Google Scholar 

  128. Mohammadi, A. H., & Richon, D. (2007). A monodisperse thermodynamic model for estimating asphaltene precipitation. AICHE Journal, 53, 2940–2947.

    Article  Google Scholar 

  129. Mohammadi, A. H., Eslamimanesh, A., & Richon, D. (2012). Monodisperse thermodynamic model based on chemical Flory–Hüggins polymer solution theories for predicting asphaltene precipitation. Industrial and Engineering Chemistry Research, 51, 4041–4055.

    Article  Google Scholar 

  130. Pazuki, G., & Nikookar, M. (2006). A modified Flory-Huggins model for prediction of asphaltenes precipitation in crude oil. Fuel, 85, 1083–1086.

    Article  Google Scholar 

  131. Mofidi, A. M., & Edalat, M. (2006). A simplified thermodynamic modeling procedure for predicting asphaltene precipitation. Fuel, 85, 2616–2621.

    Article  Google Scholar 

  132. Nourbakhsh, H., Yazdizadeh, M., & Esmaeilzadeh, F. (2011). Prediction of asphaltene precipitation by the extended Flory–Huggins model using the modified Esmaeilzadeh–Roshanfekr equation of state. Journal of Petroleum Science and Engineering, 80, 61–68.

    Article  Google Scholar 

  133. Orangi, H. S., Modarress, H., Fazlali, A., & Namazi, M. (2006). Phase behavior of binary mixture of asphaltene solvent and ternary mixture of asphaltene solvent precipitant. Fluid Phase Equilibria, 245, 117–124.

    Article  Google Scholar 

  134. Mousavi-Dehghani, S., Mirzayi, B., Mousavi, S., & Fasih, M. (2010). An Applied and Efficient Model for Asphaltene Precipitation In Production and Miscible Gas Injection Processes. Petroleum Science and Technology, 28, 113–124.

    Article  Google Scholar 

  135. Miller, A. R. (1943). The Vapor-Pressure Equations Of Solutions And The Osmotic Pressure Of Rubber. Proceedings of the Cambridge Philosophical Society, 39, 131–131.

    Article  Google Scholar 

  136. Yang, Z., Ma, C., Lin, X., Yang, J., & Guo, T. (1999). Experimental and modeling studies on the asphaltene precipitation in degassed and gas-injected reservoir oils. Fluid Phase Equilibria, 157, 143–158.

    Article  Google Scholar 

  137. Akbarzadeh, K., Ayatollahi, S., Moshfeghian, M., Alboudwarej, H., & Yarranton, H. (2004). Estimation of SARA fraction properties with the SRK EOS. Journal of Canadian Petroleum Technology, 43, 31–39.

    Google Scholar 

  138. Du, J. L., & Zhang, D. (2004). A thermodynamic model for the prediction of asphaltene precipitation. Petroleum Science and Technology, 22, 1023–1033.

    Article  Google Scholar 

  139. Anderko, A. (1989). Extension of the AEOS model to systems containing any number of associating and inert components. Fluid Phase Equilibria, 50, 21–52.

    Article  Google Scholar 

  140. Ikonomou, G., & Donohue, M. (1986). Thermodynamics of hydrogen‐bonded molecules: The associated perturbed anisotropic chain theory. AICHE Journal, 32, 1716–1725.

    Article  Google Scholar 

  141. Ikonomou, G. D., & Donohue, M. D. (1988). Extension of the associated perturbed anisotropic chain theory to mixtures with more than one associating component. Fluid Phase Equilibria, 39, 129–159.

    Article  Google Scholar 

  142. Vafaie-Sefti, M., Mousavi-Dehghani, S. A., & Mohammad-Zadeh, M. (2003). A simple model for asphaltene deposition in petroleum mixtures. Fluid Phase Equilibria, 206, 1–11.

    Article  Google Scholar 

  143. Sabbagh, O., Akbarzadeh, K., Badamchi-Zadeh, A., Svrcek, W., & Yarranton, H. (2006). Applying the PR-EoS to asphaltene precipitation from n-alkane diluted heavy oils and bitumens. Energy and Fuels, 20, 625–634.

    Article  Google Scholar 

  144. Agrawal, P., Schoeggl, F., Satyro, M., Taylor, S., & Yarranton, H. (2012). Measurement and modeling of the phase behavior of solvent diluted bitumens. Fluid Phase Equilibria, 334, 51–64.

    Article  Google Scholar 

  145. Li, Z., & Firoozabadi, A. (2010). Modeling asphaltene precipitation by n-alkanes from heavy oils and bitumens using cubic-plus-association equation of state. Energy and Fuels, 24, 1106–1113.

    Article  Google Scholar 

  146. Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V., & Tassios, D. P. (1996). An equation of state for associating fluids. Industrial and Engineering Chemistry Research, 35, 4310–4318.

    Article  Google Scholar 

  147. Wertheim, M. (1984). Fluids with highly directional attractive forces. I. Statistical thermodynamics. Journal of Statistical Physics, 35, 19–34.

    Article  MathSciNet  MATH  Google Scholar 

  148. Wertheim, M. (1984). Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations. Journal of Statistical Physics, 35, 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  149. Wertheim, M. (1986). Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres. Journal of Chemical Physics, 85, 2929–2936.

    Article  Google Scholar 

  150. Wertheim, M. (1986). Fluids with highly directional attractive forces. III. Multiple attraction sites. Journal of Statistical Physics, 42, 459–476.

    Article  MathSciNet  Google Scholar 

  151. Wertheim, M. (1986). Fluids with highly directional attractive forces. IV. Equilibrium polymerization. Journal of Statistical Physics, 42, 477–492.

    Article  MathSciNet  Google Scholar 

  152. Wertheim, M. (1987). Thermodynamic perturbation theory of polymerization. Journal of Chemical Physics, 87, 7323–7331.

    Article  Google Scholar 

  153. Li, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy and Fuels, 24, 2956–2963.

    Article  Google Scholar 

  154. Saeedi Dehaghani, A., Sefti, M. V., & Amerighasrodashti, A. (2012). The application of a new association equation of state (AEOS) for prediction of asphaltenes and resins deposition during CO2 gas injection. Petroleum Science and Technology, 30, 1548–1561.

    Article  Google Scholar 

  155. Chapman, W. G., Jackson, G., & Gubbins, K. E. (1988). Phase equilibria of associating fluids: chain molecules with multiple bonding sites. Molecular Physics, 65, 1057–1079.

    Article  Google Scholar 

  156. Chapman, W. G., Gubbins, K. E., Jackson, G., & Radosz, M. (1990). New reference equation of state for associating liquids. Industrial and Engineering Chemistry Research, 29, 1709–1721.

    Article  Google Scholar 

  157. David Ting, P., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21, 647–661.

    Article  Google Scholar 

  158. Gross, J., & Sadowski, G. (2001). Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules. Industrial and Engineering Chemistry Research, 40, 1244–1260.

    Article  Google Scholar 

  159. Barker, J. A., & Henderson, D. (1967). Perturbation theory and equation of state for fluids: The square‐well potential. Journal of Chemical Physics, 47, 2856–2861.

    Article  Google Scholar 

  160. Barker, J. (1967). A.; Henderson, D. Perturbation theory and equation of state for fluids. II. A successful theory of liquids. Journal of Chemical Physics, 47, 4714–4721.

    Article  Google Scholar 

  161. Vargas, F. M., Gonzalez, D. L., Hirasaki, G. J., & Chapman, W. G. (2009). Modeling asphaltene phase behavior in crude oil systems using the perturbed chain form of the statistical associating fluid theory (PC-SAFT) equation of state. Energy and Fuels, 23, 1140–1146.

    Article  Google Scholar 

  162. Panuganti, S. R., Tavakkoli, M., Vargas, F. M., Gonzalez, D. L., & Chapman, W. G. (2013). SAFT model for upstream asphaltene applications. Fluid Phase Equilibria, 359, 2–16.

    Article  Google Scholar 

  163. Panuganti, S. R., Vargas, F. M., Gonzalez, D. L., Kurup, A. S., & Chapman, W. G. (2012). PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior. Fuel, 93, 658–669.

    Article  Google Scholar 

  164. Gonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy and Fuels, 21, 1231–1242.

    Article  Google Scholar 

  165. Tavakkoli, M., Panuganti, S. R., Taghikhani, V., Pishvaie, M. R., & Chapman, W. G. (2014). Understanding the polydisperse behavior of asphaltenes during precipitation. Fuel, 117, 206–217.

    Article  Google Scholar 

  166. Zúñiga-Hinojosa, M. A., Justo-García, D. N., Aquino-Olivos, M. A., Román-Ramírez, L. A., & García-Sánchez, F. (2014). Modeling of asphaltene precipitation from -alkane diluted heavy oils and bitumens using the PC-SAFT equation of state. Fluid Phase Equilibria, 376, 210–224.

    Article  Google Scholar 

  167. Gil-Villegas, A., Galindo, A., Whitehead, P. J., Mills, S. J., Jackson, G., & Burgess, A. N. (1997). Statistical associating fluid theory for chain molecules with attractive potentials of variable range. Journal of Chemical Physics, 106, 4168–4186.

    Article  Google Scholar 

  168. Artola, P., Pereira, F. E., Adjiman, C. S., Galindo, A., Müller, E. A., Jackson, G., et al. (2011). Understanding the fluid phase behaviour of crude oil: Asphaltene precipitation. Fluid Phase Equilibria, 306, 129–136.

    Article  Google Scholar 

  169. Wu, J., Prausnitz, J. M., & Firoozabadi, A. (2000). Molecular thermodynamics of asphaltene precipitation in reservoir fluids. AICHE Journal, 46, 197–209.

    Article  Google Scholar 

  170. Buenrostro‐Gonzalez, E., Lira‐Galeana, C., Gil‐Villegas, A., & Wu, J. (2004). Asphaltene precipitation in crude oils: Theory and experiments. AICHE Journal, 50, 2552–2570.

    Article  Google Scholar 

  171. Aquino-Olivos, M. A., Grolier, J. E., Randzio, S. L., Aguirre-Gutiérrez, A. J., & García-Sánchez, F. (2013). Determination of the asphaltene precipitation envelope and bubble point pressure for a Mexican crude oil by scanning transitiometry. Energy and Fuels, 27, 1212–1222.

    Article  Google Scholar 

  172. Rassamdana, H., Dabir, B., Nematy, M., Farhani, M., & Sahimi, M. (1996). Asphalt flocculation and deposition: I. The onset of precipitation. AICHE Journal, 42, 10–22.

    Article  Google Scholar 

  173. Rassamdana, H., & Sahimi, M. (1996). Asphalt flocculation and deposition: II. Formation and growth of fractal aggregates. AICHE Journal, 42, 3318–3332.

    Article  Google Scholar 

  174. Hu, Y., Chen, G., Yang, J., & Guo, T. (2000). A study on the application of scaling equation for asphaltene precipitation. Fluid Phase Equilibria, 171, 181–195.

    Article  Google Scholar 

  175. Duda, Y., & Lira-Galeana, C. (2006). Thermodynamics of asphaltene structure and aggregation. Fluid Phase Equilibria, 241, 257–267.

    Article  Google Scholar 

  176. Zahedi, G., Fazlali, A., Hosseini, S., Pazuki, G., & Sheikhattar, L. (2009). Prediction of asphaltene precipitation in crude oil. Journal of Petroleum Science and Engineering, 68, 218–222.

    Article  Google Scholar 

  177. Na’imi, S. R., Gholami, A., & Asoodeh, M. (2014). Prediction of crude oil asphaltene precipitation using support vector regression. Journal of Dispersion Science and Technology, 35, 518–523.

    Article  Google Scholar 

  178. Alvarez-Ramirez, F., Ramirez-Jaramillo, E., & Ruiz-Morales, Y. (2006). Calculation of the interaction potential curve between asphaltene-asphaltene, asphaltene-resin, and resin-resin systems using density functional theory. Energy and Fuels, 20, 195–204.

    Article  Google Scholar 

  179. Harris, J. (1985). Simplified method for calculating the energy of weakly interacting fragments. Physical Review B, 31, 1770.

    Article  Google Scholar 

  180. Vosko, S., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58, 1200–1211.

    Article  Google Scholar 

  181. Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45, 13244–13249.

    Article  Google Scholar 

  182. Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. Journal of Chemical Physics, 92, 508–517.

    Article  Google Scholar 

  183. Moreira da Costa, L., Stoyanov, S. R., Gusarov, S., Seidl, P. R., Carneiro, W. de M., & José, K., A. (2014). Computational study of the effect of dispersion interactions on the thermochemistry of aggregation of fused polycyclic aromatic hydrocarbons as model asphaltene compounds in solution. Journal of Physical Chemistry A, 118, 896–908.

    Article  Google Scholar 

  184. Grimme, S. (2003). Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel-and antiparallel-spin pair correlation energies. Journal of Chemical Physics, 118, 9095–9102.

    Article  Google Scholar 

  185. Takatani, T., Hohenstein, E. G., & Sherrill, C. D. (2008). Improvement of the coupled-cluster singles and doubles method via scaling same-and opposite-spin components of the double excitation correlation energy. Journal of Chemical Physics, 128, 124111.

    Article  Google Scholar 

  186. Frisch, M. J., Head-Gordon, M., & Pople, J. A. (1990). A direct MP2 gradient method. Chemical Physics Letters, 166, 275–280.

    Article  Google Scholar 

  187. Head-Gordon, M., & Head-Gordon, T. (1994). Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chemical Physics Letters, 220, 122–128.

    Article  Google Scholar 

  188. Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. Journal of Chemical Physics, 80, 3265–3269.

    Article  Google Scholar 

  189. Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6‐31G* basis set for third‐row atoms. Journal of Computational Chemistry, 22, 976–984.

    Article  Google Scholar 

  190. Barone, V., & Cossi, M. (1998). Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. Journal of Physical Chemistry A, 102, 1995–2001.

    Article  Google Scholar 

  191. Cossi, M., Rega, N., Scalmani, G., & Barone, V. (2003). Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. Journal of Computational Chemistry, 24, 669–681.

    Article  Google Scholar 

  192. da Costa, L. M., Stoyanov, S. R., Gusarov, S., Tan, X., Gray, M. R., & Stryker, J. M., et al. (2012). Density functional theory investigation of the contributions of p–p stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds. Energy Fuels 26, 2727–2735.

    Google Scholar 

  193. Chai, J., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10, 6615–6620.

    Article  Google Scholar 

  194. Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3094.

    Article  Google Scholar 

  195. da Costa, L. M., Hayaki, S., Stoyanov, S. R., Gusarov, S., Tan, X., Gray, M. R., et al. (2012). 3D-RISM-KH molecular theory of solvation and density functional theory investigation of the role of water in the aggregation of model asphaltenes. Physical Chemistry Chemical Physics, 14, 3922–3934.

    Article  Google Scholar 

  196. Carauta, A. N., Correia, J. C., Seidl, P. R., & Silva, D. M. (2005). Conformational search and dimerization study of average structures of asphaltenes. Journal of Molecular Structure (Theochem), 755, 1–8.

    Article  Google Scholar 

  197. Castellano, O., Gimon, R., & Soscun, H. (2011). Theoretical study of the σ–π and π–π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: Implications on the resin–asphaltene stability in crude oil. Energy and Fuels, 25, 2526–2541.

    Article  Google Scholar 

  198. Brandt, H., Hendriks, E., Michels, M., & Visser, F. (1995). Thermodynamic modeling of asphaltene stacking. The Journal of Physical Chemistry, 99, 10430–10432.

    Article  Google Scholar 

  199. Ortega-Rodriguez, A., Lira-Galeana, C., Ruiz-Morales, Y., & Cruz, S. (2001). Interaction energy in Maya-oil asphaltenes: A molecular mechanics study. Petroleum Science and Technology, 19, 245–256.

    Article  Google Scholar 

  200. Pacheco-Sánchez, J., Alvarez-Ramírez, F., & Martínez-Magadán, J. (2003). Aggregate asphaltene structural models. American Chemical Society, Division of Petroleum Chemistry, 48, 71–73.

    Google Scholar 

  201. Pacheco-Sánchez, J., Alvarez-Ramirez, F., & Martínez-Magadán, J. (1676–1686). Morphology of aggregated asphaltene structural models. Energy and Fuels, 2004, 18.

    Google Scholar 

  202. Murgich, J., Merino-Garcia, D., Andersen, S. I., Manuel del Río, J., & Galeana, C. L. (2002). Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions. Langmuir, 18, 9080–9086.

    Article  Google Scholar 

  203. Murgich, J., Rodríguez, J., & Aray, Y. (1996). Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins. Energy and Fuels, 10, 68–76.

    Google Scholar 

  204. Murgich, J., & Strausz, O. P. (2001). Molecular mechanics of aggregates of asphaltenes and resins of the Athabasca oil. Petroleum Science and Technology, 19, 231–243.

    Article  Google Scholar 

  205. Murgich, J. (2003). Molecular simulation and the aggregation of the heavy fractions in crude oils. Molecular Simulation, 29, 451–461.

    Article  Google Scholar 

  206. Rogel, E. (2000). Simulation of interactions in asphaltene aggregates. Energy and Fuels, 14, 566–574.

    Article  Google Scholar 

  207. Pacheco-Sánchez, J., Zaragoza, I., & Martinez-Magadan, J. (2003). Asphaltene aggregation under vacuum at different temperatures by molecular dynamics. Energy and Fuels, 17, 1346–1355.

    Article  Google Scholar 

  208. Takanohashi, T., Sato, S., Saito, I., & Tanaka, R. (2003). Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates. Energy and Fuels, 17, 135–139.

    Article  Google Scholar 

  209. Boek, E. S., Yakovlev, D. S., & Headen, T. F. (2009). Quantitative molecular representation of asphaltenes and molecular dynamics simulation of their aggregation. Energy and Fuels, 23, 1209–1219.

    Article  Google Scholar 

  210. Rogel, E. (1995). Studies on asphaltene aggregation via computational chemistry. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 104, 85–93.

    Article  Google Scholar 

  211. Headen, T. F., Boek, E. S., & Skipper, N. T. (2009). Evidence for asphaltene nanoaggregation in toluene and heptane from molecular dynamics simulations. Energy and Fuels, 23, 1220–1229.

    Article  Google Scholar 

  212. Ungerer, P., Rigby, D., Leblanc, B., & Yiannourakou, M. (2014). Sensitivity of the aggregation behaviour of asphaltenes to molecular weight and structure using molecular dynamics. Molecular Simulation, 40, 115–122.

    Article  Google Scholar 

  213. Kuznicki, T., Masliyah, J. H., & Bhattacharjee, S. (2008). Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy and Fuels, 22, 2379–2389.

    Article  Google Scholar 

  214. Jian, C., Tang, T., & Bhattacharjee, S. (2014). Molecular dynamics investigation on the aggregation of Violanthrone78-based model asphaltenes in toluene. Energy and Fuels, 28, 3604–3613.

    Article  Google Scholar 

  215. Jian, C., & Tang, T. (2014). One-dimensional self-assembly of poly-aromatic compounds revealed by molecular dynamics simulations. Journal of Physical Chemistry B, 118, 12772–12780.

    Article  Google Scholar 

  216. Sedghi, M., Goual, L., Welch, W., & Kubelka, J. (2013). Effect of asphaltene structure on association and aggregation using molecular dynamics. Journal of Physical Chemistry B, 117, 5765–5776.

    Article  Google Scholar 

  217. Teklebrhan, R. B., Ge, L., Bhattacharjee, S., Xu, Z., & Sjöblom, J. (2012). Probing structure–nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study. Journal of Physical Chemistry B, 116, 5907–5918.

    Article  Google Scholar 

  218. Carauta, A. N., Seidl, P. R., Chrisman, E. C., Correia, J. C., Menechini, P. D. O., Silva, D. M., et al. (2005). Modeling solvent effects on asphaltene dimers. Energy and Fuels, 19, 1245–1251.

    Article  Google Scholar 

  219. Frigerio, F., & Molinari, D. (2011). A multiscale approach to the simulation of asphaltenes. Computational and Theoretical Chemistry, 975, 76–82.

    Article  Google Scholar 

  220. Takanohashi, T., Sato, S., & Tanaka, R. (2003). Molecular dynamics simulation of structural relaxation of asphaltene aggregates. Petroleum Science and Technology, 21, 491–505.

    Article  Google Scholar 

  221. Pacheco-Sánchez, J., Zaragoza, I., & Martínez-Magadán, J. (2004). Preliminary study of the effect of pressure on asphaltene disassociation by molecular dynamics. Petroleum Science and Technology, 22, 927–942.

    Article  Google Scholar 

  222. Headen, T. F., & Boek, E. S. (2010). Molecular dynamics simulations of asphaltene aggregation in supercritical carbon dioxide with and without limonene. Energy and Fuels, 25, 503–508.

    Article  Google Scholar 

  223. Hu, M., Shao, C., Dong, L., & Zhu, J. (2011). Molecular dynamics simulation of asphaltene deposition during CO2 miscible flooding. Petroleum Science and Technology, 29, 1274–1284.

    Article  Google Scholar 

  224. Jian, C., Tang, T., & Bhattacharjee, S. (2013). Probing the effect of side-chain length on the aggregation of a model asphaltene using molecular dynamics simulations. Energy and Fuels, 2057–2067, 27.

    Google Scholar 

  225. Zhang, L., & Greenfield, M. L. (2007). Molecular orientation in model asphalts using molecular simulation. Energy and Fuels, 21, 1102–1111.

    Article  Google Scholar 

  226. Diallo, M. S., Strachan, A., Faulon, J., & Goddard, W. A., III. (2004). Thermodynamic properties of asphaltenes through computer assisted structure elucidation and atomistic simulations 1. Bulk Arabian Light asphaltenes. Petroleum Science and Technology, 22, 877–899.

    Article  Google Scholar 

  227. Aray, Y., Hernández-Bravo, R., Parra, J. G., Rodríguez, J., & Coll, D. S. (2011). Exploring the Structure–solubility relationship of asphaltene models in toluene, heptane, and amphiphiles using a molecular dynamic atomistic methodology. Journal of Physical Chemistry A, 115, 11495–11507.

    Article  Google Scholar 

  228. Hansen, C. M. (2007). Hansen solubility parameters: a user’s handbook (2nd ed.). Hoboken: CRC Press.

    Book  Google Scholar 

  229. Aguilera-Mercado, B., Herdes, C., Murgich, J., & Müller, E. (2006). Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils. Energy and Fuels, 20, 327–338.

    Article  Google Scholar 

  230. Ortega-Rodríguez, A., Cruz, S., Gil-Villegas, A., Guevara-Rodriguez, F., & Lira-Galeana, C. (2003). Molecular view of the asphaltene aggregation behavior in asphaltene-resin mixtures. Energy and Fuels, 17, 1100–1108.

    Article  Google Scholar 

  231. Zhang, S., Sun, L. L., Xu, J., Wu, H., & Wen, H. (2010). Aggregate structure in heavy crude oil: using a dissipative particle dynamics based mesoscale platform. Energy and Fuels, 24, 4312–4326.

    Article  Google Scholar 

  232. Zhang, S., Xu, J., Wen, H., & Bhattacharjee, S. (2011). Integration of rotational algorithms into dissipative particle dynamics: modeling polyaromatic hydrocarbons on the meso-scale. Molecular Physics, 109, 1873–1888.

    Article  Google Scholar 

  233. Wang, S., Xu, J., & Wen, H. (2014). The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics. Computer Physics Communications, 185, 3069–3078.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jian, C., Tang, T. (2016). Understanding Asphaltene Aggregation and Precipitation Through Theoretical and Computational Studies. In: Jin, C., Cusatis, G. (eds) New Frontiers in Oil and Gas Exploration. Springer, Cham. https://doi.org/10.1007/978-3-319-40124-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40124-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40122-5

  • Online ISBN: 978-3-319-40124-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics