Skip to main content

Radiation Safety and CT Dosimetry in PET/CT Imaging

  • Chapter
  • First Online:
Basic Science of PET Imaging
  • 3174 Accesses

Abstract

Some of the particular radiation safety challenges associated with PET/CT are described for those more familiar with working in conventional nuclear medicine departments. Facility design and shielding calculations are described and examples given. Challenges in keeping doses to the staff and public down are described with some of the approaches to keeping doses as low as reasonably achievable. Computed tomography (CT) technology and dose metrics are described in some detail, and some guidance on quality control checks and patient dose in CT and PET/CT is given with references to sources of information on these topics in this rapidly changing field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delacroix D, Guerre JP, Leblanc P, Hickman C. Radionuclide and radiation protection data handbook. Radiat Prot Dosimetry. 1998;76:24.

    Article  Google Scholar 

  2. Royal College of Physicians and Royal College of Radiologists Evidence based indication for the use of PET-CT in the UK 2013. London: RCR; 2013.

    Google Scholar 

  3. IAEA Human Health Series No 11. Planning a Clinical PET centre. 2010. IAEA Vienna ISSN 2075–3772.

    Google Scholar 

  4. Lecchi M, Lucignani G, Maioli C, Ignelzi G, Sole A. Validation of a new protocol for 18F-FDG infusion using an automatic combined dispenser and injector system. Eur J Nucl Med Mol Imaging. 2012;39(11):1720–9.

    Article  PubMed  Google Scholar 

  5. Sutton DG, Martin CJ, Williams JR, Peet DJ. BIR working party, BIR, London. 2nd ed. 2012. ISBN −13 978-0-905749-74-x.

    Google Scholar 

  6. Madsen MT, Anderson JA, Halama JR, Kleck J, Simpkin DJ, Votaw JR, et al. PET and PET/CT shielding requirements AAPM task report 108. Med Phys. 2006;33:4–15.

    Article  PubMed  Google Scholar 

  7. Radiological Protection Institute of Ireland. The design of diagnostic medical facilities where ionising radiation is used. 2009. RPII Code of Practice.

    Google Scholar 

  8. IAEA Safety Report Series No 58. Radiation protection in newer medical imaging techniques PET/CT. 2008. STI/PUB/1343 ISBN 978-92-0-106808-8.

    Google Scholar 

  9. Benetar NA, Cronin BF, O’Doherty MJ. Radiation dose rates from patients undergoing PET: implications for technologists and waiting areas. Eur J Nucl Med. 2000;27:583–9.

    Article  Google Scholar 

  10. L121 HSE. Work with ionising radiation. Approved code of practise and practical guidance on the Ionising Radiation Regulations 1999. London: HSE; 2000.

    Google Scholar 

  11. Pasciak AS, Jones AK. PShield: an exact three-dimensional numerical solution for determining optimal shielding designs for PET/CT facilities. Med Phys. 2012;39(6):3060–9.

    Article  PubMed  Google Scholar 

  12. Antić V, Stanković K, Vujisić M, Osmokrović P. Comparison of various methods for designing the shielding from ionising radiation at PET-CT installations. Radiat Protect Dosim. 2013;152(2):245–9.

    Article  CAS  Google Scholar 

  13. Lo Meo S, Cicoria G, Campanella F, Mattozzi M, Panebianco AS, Marengo M. Radiation dose around a PET scanner installation: comparison of Monte Carlo simulations, analytical calculations and experimental results. Physica Medica. 2014;30(4):448–53.

    Article  CAS  PubMed  Google Scholar 

  14. Walsh C, O’Connor C, O’Reilly G. Eye dose monitoring of PET/CT workers. Br J Radiol. 2014. doi:10.1259/bjr.20140373.

  15. Mattsson S, Soderborg M. Radiation dose management in CT, SPECT CT and PET/CT techniques. Radiat Protect Dosim. 2011;147(1–2):13–21. doi:10.1093/rpd/ncr261.

    Article  Google Scholar 

  16. Burgess P. Guidance on the choice, use and maintenance of hand held radiation monitoring equipment NRPB-R326. 2001. ISBN 85951 461 7.

    Google Scholar 

  17. Kemerink GJ, Vanhavere F, Barth I, Mottaghy F. Extremity doses of nuclear medicine personnel: a concern. Eur J Nucl Med Mol Imaging. 2012;39:529–32.

    Article  PubMed  Google Scholar 

  18. Chiesa C. Radiation dose to technicians per nuclear medicine procedure: comparison between technetium-99m, gallium-67, and iodine-131 radiotracers and fluorine-18 fluorodeoxyglucose. Eur J Nucl Med. 1997;24(11).

    Google Scholar 

  19. Guillet B. Technologist radiation exposure in routine clinical practice with 18F-FDG PET. J Nucl Med Technol. 2005;33(3).

    Google Scholar 

  20. Roberts FO, Gunawardana DH, Pathmaraj K, Wallace A, Paul LU, Mi T, et al. Radiation dose to PET technologists and strategies to lower occupational exposure. J Nucl Med Tech 2005;33:44–7.

    Google Scholar 

  21. Seierstad T. Doses to nuclear technicians in a dedicated PET/CT centre utilising 18F fluorodeoxyglucose (FDG). Radiat Prot Dosimetry. 2007;123(2):246–9.

    Article  CAS  PubMed  Google Scholar 

  22. Peet DJ, et al. Radiation protection in fixed PET/CT facilities – design and operation. Br J Radiol. 2012;85:643–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalendar WA. Computed tomography: fundamentals, system technology, image quality, applications. 3rd ed. Wiley, Erlangen; 2011. ISBN: 978-3-89578-317-3.

    Google Scholar 

  24. 2004 CT Quality Criteria (MSCT 2004) European Guidelines for Multislice Computed Tomography; Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Persijn van Meerten E, Rodríguez R, Schneider K, Calzado A, Geleijns J, Jessen KA, Panzer W, Shrimpton PC, Tosi, G. Funded by the European Commission, Contract number FIGM-CT2000-20078-CT-TIP. 2004. http://www.msct.eu/CT_Quality_Criteria.htm#. Download the 2004 CT Quality Criteria. Accessed July 2015.

  25. Zhang Y, et al. Organ doses, effective doses, and risk indices in adult CT: comparison of four types of reference phantoms across different examination protocols. Med Phys. 2012;39(6):3404–23.

    Google Scholar 

  26. International Electrotechnical Commission Medical electrical equipment—Part 2–44, 3rd ed. Amendment 1: particular requirements for basic safety and essential performance of x-ray equipment for computed tomography. IEC-60601-2-44-am1. Geneva: International Electrotechnical Commission; 2012.

    Google Scholar 

  27. Annals of the ICRP 105 radiological protection in medicine. Ann ICRP. 2007;37(6):1–63.

    Google Scholar 

  28. IRMER the Ionising Radiation (Medical Exposure) Regulations 2000 SI1059. 2000.

    Google Scholar 

  29. International Atomic Energy Agency Status of computed tomography dosimetry for wide cone beam scanners. IAEA Human Health Report 5. Vienna: International Atomic Energy Agency; 2011.

    Google Scholar 

  30. Platten DJ, Castellano IA, Chapple C-L, Edyvean S, Jansen JTM, Johnson B, Lewis MA. Radiation dosimetry for wide-beam CT scanners: recommendations of a working party of the Institute of Physics and Engineering in Medicine. Br J Radiol. 2013;86(1027):20130089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. ICRP103. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007;37(2–4).

    Google Scholar 

  32. Report of AAPM TG 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations Report of AAPM TG 204. 2011.

    Google Scholar 

  33. Report of AAPM TG220: use of water equivalent diameter for calculating patient size and Size-specific dose estimates (SSDE) in CT Report of AAPM TG220. 2014.

    Google Scholar 

  34. ICRU Report No. 87: radiation dose and image-quality assessment in computed tomography. International Commission on Radiation Units and Measurements. http://www.ncbi.nlm.nih.gov/pubmed/24158924. J ICRU. 2012;12(1):1–149. doi:10.1093/jicru/ndt007.

  35. Report of AAPM TG111: comprehensive methodology for the evaluation of radiation dose in CT: the future of CT dosimetry AAPM TG111. 2010.

    Google Scholar 

  36. ICRP Publication 110 ICRP. Adult reference computational phantoms. ICRP Publication 110. Ann ICRP. 2009;39(2).

    Google Scholar 

  37. Shrimpton PC, Jansen JTM, Harrison JD. Updated estimates of typical effective doses for common CT examinations in the UK following the 2011 national review. Br J Radiol. 2016;89:1057.

    Article  Google Scholar 

  38. AAPM 96 the Measurement, Reporting, and Management of Radiation Dose in CT AAPM Report 96. 2008.

    Google Scholar 

  39. ImPACT (Imaging Performance Assessment of CT scanners) (impactscan.org) http://www.impactscan.org/ctdosimetry.htm. Accessed May 2015.

  40. CT-Expo. version 1.5; Medizinische Hochschule. Hannover.

    Google Scholar 

  41. ImpactDose. version 1.1; VAMP. Erlangen.

    Google Scholar 

  42. PHE – CRCE – 013 Doses from Computed Tomography (CT) Examinations in the UK – 2011 Review. 2011. https://www.gov.uk/government/publications/doses-from-computed-tomography-ct-examinations-in-the-uk.

  43. Iball GR, Tout D. Computed tomography automatic exposure control techniques in F18-FDG oncology PET-CT scanning. Nucl Med Comms. 2014. doi:10.1097/MNM00000000000000064.

  44. AAPM Guidelines. J Applied Clin Phys. 2013;14(5):2–12.

    Google Scholar 

  45. ICRP 106 radiation dose to patients from radiopharmaceuticals addendum 3 to ICRP 53. Ann ICRP. 2008;38:1–197.

    Google Scholar 

  46. Brix G, et al. Radiation exposure of patients undergoing whole-body dual modality F18-FDG PET/CT examinations. J Nucl Med. 2005;46(4):608–13.

    CAS  PubMed  Google Scholar 

  47. IPEM Report 91 Recommended standards for the routine performance testing of diagnostic X-ray imaging systems. 2005. ISBN 1-903613-24-8.

    Google Scholar 

  48. IPEM Report No 32 Part III. 2nd ed. Measurement of the performance characteristics of diagnostic X-ray systems used in medicine. 2003. ISBN 0-904181-76-6.

    Google Scholar 

  49. ImPACT. http://www.impactscan.org/acceptance.htm.

  50. http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1557_web.pdf. IAEA Human Health Series Np 19. 2012.

  51. Human Health series No. 1: quality assurance for PET and PET/CT systems. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1393_web.pdf.

  52. Evaluation and routine testing in medical imaging departments – Part 3–5: acceptance tests – imaging performance of computed tomography X-ray equipment IEC IEC 61223-3-5:2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie Peet MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peet, D., Edyvean, S. (2017). Radiation Safety and CT Dosimetry in PET/CT Imaging. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics