Skip to main content

Introduction to Top Quark Production and Decay in Proton-Proton Collisions

  • Chapter
  • First Online:
Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass

Part of the book series: Springer Theses ((Springer Theses))

  • 306 Accesses

Abstract

The properties of the top quark are important parameters of the SM and determine the precision of our understanding of nature to a wide extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Anti-fermions are expressed as right-handed doublets and left-handed singlets and are implied in the following.

  2. 2.

    Throughout this thesis, \(m_t^{\overline{{\text {MS}}}}\) corresponds to \(m_t^{\overline{{\text {MS}}}} (\mu =m_t^{\overline{{\text {MS}}}})\).

  3. 3.

    To all orders, this series shows the divergent behavior discussed before. However, it is well-defined for a fixed order in perturbation theory.

References

  1. Thomas, A.W., Weise, W.: The Structure of the Nucleon. Wiley-VCH (2000)

    Google Scholar 

  2. Hooft, G.: Renormalization and gauge invariance. Progr. Theor. Phys. Suppl. 170, 56–71 (2007)

    Google Scholar 

  3. tHooft, G., Veltman, M.: Regularization and renormalization of gauge fields. Nucl. Phys. B44, 189–213 (1972)

    Google Scholar 

  4. MissMJ: Standard model of elementary particles—Wikipedia, the free encyclopedia (2014). http://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg. Accessed November 2014. Own work by uploader, PBS NOVA, Fermilab, Office of Science, United States Department of Energy, Particle Data Group

  5. Kobayashi, M., Maskawa, T.: CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  6. Christenson, J.H., Cronin, J.W., Fitch, V.L., Turlay, R.: Evidence for the \(2\pi \) decay of the \(k_{2}^{0}\) meson. Phys. Rev. Lett. 13, 138–140 (1964)

    Article  ADS  Google Scholar 

  7. KTeV: Observation of direct CP violation in \(K_{S,L} \rightarrow \pi \pi \) decays. Phys. Rev. Lett. 83, 22–27 (1999)

    Google Scholar 

  8. CMS Collaboration: Measurement of the t-channel single-top-quark production cross section and of the \(\mid V_{tb} \mid \) CKM matrix element in pp collisions at \(\sqrt{s}\)= 8 TeV. JHEP 1406, 090 (2014)

    Google Scholar 

  9. Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Article  ADS  Google Scholar 

  10. Glashow, S.L.: Partial-symmetries of weak interactions. Nucl. Phys. 22(4), 579–588 (1961)

    Article  Google Scholar 

  11. H1 Collaboration: Measurement and QCD analysis of neutral and charged current cross-sections at HERA. Eur. Phys. J. C 30, 1–32 (2003)

    Google Scholar 

  12. ZEUS, H1: Combination of measurements of inclusive deep inelastic \(e^{\pm }p\) scattering cross sections and QCD analysis of hera data (2015). arXiv:1506.06042

  13. Higgs, P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  14. Particle Data Group: Review of particle physics: status of higgs boson physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  15. H1 and ZEUS Collaboration: JHEP combined measurement and QCD analysis of the inclusive \(e^\pm p\) scattering cross sections at HERA. 1001, 109 (2010)

    Google Scholar 

  16. NuTeV Collaboration: Precise measurement of neutrino and anti-neutrino differential cross sections. Phys. Rev. D 74, 012008 (2006)

    Google Scholar 

  17. CMS Collaboration: Measurement of the muon charge asymmetry in inclusive \(pp \rightarrow {}W+X\) production at \(\sqrt{s}=7 \rm TeV\) and an improved determination of light parton distribution functions. Phys. Rev. D 90, 032004 (2014)

    Google Scholar 

  18. Gribov, V., Lipatov, L.: Deep inelastic scattering in perturbation theory. Sov. J. Nucl. Phys 15, 438 (1972)

    Google Scholar 

  19. Curci, G., Furmanski, W., Petronzio, R.: Evolution of parton densities beyond leading order: the non-singlet case. Nucl. Phys. B 175(1), 27–92 (1980)

    Article  ADS  Google Scholar 

  20. Furmanski, W., Petronzio, R.: Singlet parton densities beyond leading order. Phys. Lett. B 97(3–4), 437–442 (1980)

    Article  ADS  Google Scholar 

  21. Altarelli, G., Parisi, G.: Asymptotic freedom in parton language. Nucl. Phys. B 126(2), 298–318 (1977)

    Article  ADS  Google Scholar 

  22. Moch, S., Vermaseren, J., Vogt, A.: The three loop splitting functions in QCD: the nonsinglet case. Nucl. Phys. B 688, 101–134 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Vogt, A., Moch, S., Vermaseren, J.: The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B 691, 129–181 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Lipka, K.: Recent results from HERA and their impact for LHC. Eur. Phys. J. Conf. 28, 02008 (2012)

    Article  Google Scholar 

  25. Drell, S.D., Yan, T.-M.: Massive lepton-pair production in hadron-hadron collisions at high energies. Phys. Rev. Lett. 25, 316–320 (1970)

    Article  ADS  Google Scholar 

  26. Campbell, J.M., Huston, J.W., Stirling, W.J.: Hard interactions of quarks and gluons: a primer for LHC physics. Rept. Prog. Phys. 70, 89 (2007)

    Article  ADS  Google Scholar 

  27. D0 Collaboration: Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995)

    Google Scholar 

  28. Langenfeld, U., Moch, S., Uwer, P.: Measuring the running top-quark mass. Phys. Rev. D 80, 054009 (2009)

    Article  ADS  Google Scholar 

  29. Chivukula, R.S.: Electroweak symmetry breaking. J. Phys.: Conf. Ser. 37(1), 28 (2006)

    ADS  Google Scholar 

  30. De Simone, A., Matsedonskyi, O., Rattazzi, R., Wulzer, A.: A first top partner Hunter’s guide. JHEP 1304, 004 (2013)

    Article  Google Scholar 

  31. Bernreuther, W.: Top quark physics at the LHC. J. Phys. G 35, 083001 (2008)

    Article  ADS  Google Scholar 

  32. Stirling, W.J.: Progress in parton distribution functions and implications for LHC (2008). arXiv:0812.2341

  33. Cascioli, F., Kallweit, S., Maierhöfer, P., Pozzorini, S.: A unified nlo description of top-pair and associated wt production. Eur. Phys. J. C 74(3) (2014)

    Google Scholar 

  34. White, C.D., Frixione, S., Laenen, E., Maltoni, F.: Isolating Wt production at the LHC. JHEP 0911, 074 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Frixione, S., Laenen, E., Motylinski, P., Webber, B.R., White, C.D.: Single-top hadroproduction in association with a W boson. JHEP 0807, 029 (2008)

    Article  ADS  Google Scholar 

  36. Tait, T.M.: The \(t W^{-}\) mode of single top production. Phys. Rev. D 61, 034001 (2000)

    Article  ADS  Google Scholar 

  37. Moch, S.: Precision determination of the top-quark mass. PoS LL2014, 054 (2014)

    Google Scholar 

  38. Buckley, A., Butterworth, J., Gieseke, S., Grellscheid, D., Hoche, S., et al.: General-purpose event generators for LHC physics. Phys. Rept. 504, 145–233 (2011)

    Article  ADS  Google Scholar 

  39. Bigi, I.I.Y., Shifman, M.A., Uraltsev, N.: Aspects of heavy quark theory. Ann. Rev. Nucl. Part. Sci. 47, 591–661 (1997)

    Article  ADS  Google Scholar 

  40. Smith, M.C., Willenbrock, S.S.: Top quark pole mass. Phys. Rev. Lett. 79, 3825–3828 (1997)

    Article  ADS  Google Scholar 

  41. Beneke, M.: Renormalons. Phys. Rept. 317, 1–142 (1999)

    Article  ADS  Google Scholar 

  42. Beneke, M., Braun, V.: Naive nonabelianization and resummation of fermion bubble chains. Phys. Lett. B 348(3–4), 513–520 (1995)

    Article  ADS  Google Scholar 

  43. Ball, P., Beneke, M., Braun, V.M.: Resummation of (beta0 alpha-s)**n corrections in QCD: techniques and applications to the tau hadronic width and the heavy quark pole mass. Nucl. Phys. B 452, 563–625 (1995)

    Article  ADS  Google Scholar 

  44. Philippides, K., Sirlin, A.: Leading vacuum polarization contributions to the relation between pole and running masses. Nucl. Phys. B 450, 3–20 (1995)

    Article  ADS  Google Scholar 

  45. Beneke, M., Braun, V.M.: Heavy quark effective theory beyond perturbation theory: renormalons, the pole mass and the residual mass term. Nucl. Phys. B 426, 301–343 (1994)

    Article  ADS  Google Scholar 

  46. Bigi, I.I.Y., Shifman, M.A., Uraltsev, N.G., Vainshtein, A.I.: The pole mass of the heavy quark. Perturbation theory and beyond. Phys. Rev. D 50, 2234–2246 (1994)

    Article  ADS  Google Scholar 

  47. Marquard, P., Smirnov, A.V., Smirnov, V.A., Steinhauser, M.: Quark mass relations to four-loop order in perturbative qcd. Phys. Rev. Lett. 114, 142002 (2015)

    Article  ADS  Google Scholar 

  48. Hoang, A.H., Stewart, I.W.: Top mass measurements from jets and the tevatron top-quark mass. Nucl. Phys. Proc. Suppl. 185, 220–226 (2008)

    Article  ADS  Google Scholar 

  49. Hoang, A.H., Jain, A., Scimemi, I., Stewart, I.W.: R-evolution: improving perturbative QCD. Phys. Rev. D 82, 011501 (2010)

    Article  ADS  Google Scholar 

  50. Alekhin, S., Djouadi, A., Moch, S.: The top quark and Higgs boson masses and the stability of the electroweak vacuum. Phys. Lett. B 716, 214–219 (2012)

    Article  ADS  Google Scholar 

  51. CMS Collaboration: Measurement of the top-quark mass in \(t\bar{t}\) events with lepton+jets final states in pp collisions at \(\sqrt{s}=8\) TeV. CMS-PAS-TOP-14-001. CERN, Geneva (2014)

    Google Scholar 

  52. ATLAS Collaboration: Measurement of the top quark mass in the \(t\bar{t}\rightarrow \text{lepton+jets} \) and \(t\bar{t}\rightarrow \text{ dilepton } \) channels using \(\sqrt{s}=7\) \({\rm TeV}\) ATLAS data. Eur. Phys. J. C 75(7), 330 (2015)

    Google Scholar 

  53. D0 Collaboration: Precision measurement of the top-quark mass in lepton+jets final states. Phys. Rev. Lett. 113, 032002 (2014)

    Google Scholar 

  54. CDF Collaboration: Precision top-quark mass measurements at CDF. Phys. Rev. Lett. 109, 152003 (2012)

    Google Scholar 

  55. Moch, S., Weinzierl, S., Alekhin, S., Blumlein, J., de la Cruz, L. et al.: High precision fundamental constants at the TeV scale (2014). arXiv:1405.4781

  56. Mangano, M.: Interpreting the top quark mass: theoretical and MC aspects (2013). https://indico.desy.de/getFile.py/access?contribId=30&sessionId=9&resId=0&materialId=slides&confId=7095. Accessed August 2015. TOP 2013 Durbach, Sept 14–19 2013 (presentation)

  57. CMS Collaboration: Determination of the top-quark pole mass and strong coupling constant from the \(t\bar{t}\) production cross section in pp collisions at \(\sqrt{s}\) = 7 TeV. Phys. Lett. B 728, 496–517 (2014)

    Google Scholar 

  58. ATLAS Collaboration: Measurement of the \(t\overline{t}\) production cross-section using \(e\mu \) events with \(b\)-tagged jets in \(pp\) collisions at \(\sqrt{s}=7\) and 8 TeV with the ATLAS detector. Eur. Phys. J. C 74(10), 3109 (2014)

    Google Scholar 

  59. D0 Collaboration: Determination of the pole and masses of the top quark from the cross section. Phys. Lett. B 703(4), 422–427 (2011)

    Google Scholar 

  60. Alioli, S., Fernandez, P., Fuster, J., Irles, A., Moch, S.-O., Uwer, P., Vos, M.: A new observable to measure the top-quark mass at hadron colliders. Eur. Phys. J. C 73, 2438 (2013)

    Article  ADS  Google Scholar 

  61. ATLAS Collaboration: Determination of the top-quark pole mass using \(t \bar{t}+1\)-jet events collected with the ATLAS experiment in 7 TeV \(pp\) collisions (2015). arXiv:1507.01769

  62. CMS Collaboration: Measurement of masses in the \(t \bar{t}\) system by kinematic endpoints in pp collisions at \(\sqrt{s}\) = 7 TeV. Eur. Phys. J. C 73, 2494 (2013)

    Google Scholar 

  63. Seidel, K., Simon, F., Tesar, M., Poss, S.: Top quark mass measurements at and above threshold at CLIC. Eur. Phys. J. C 73, 2530 (2013)

    Article  ADS  Google Scholar 

  64. Hoang, A.H., Stahlhofen, M.: The top-antitop threshold at the ILC: NNLL QCD uncertainties. JHEP 05, 121 (2014)

    Article  ADS  Google Scholar 

  65. Beneke, M., Kiyo, Y., Marquard, P., Penin, A., Piclum, J., Steinhauser, M.: Next-to-next-to-next-to-leading order QCD prediction for the top anti-top S-wave pair production cross section near threshold in e+ e- annihilation (2015). arXiv:1506.06864

  66. Bärnreuther, P., Czakon, M., Mitov, A.: Percent level precision physics at the tevatron: first genuine NNLO QCD corrections to \(q \bar{q} \rightarrow t \bar{t} + X\). Phys. Rev. Lett. 109, 132001 (2012)

    Google Scholar 

  67. Czakon, M., Mitov, A.: NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP 1212, 054 (2012)

    Article  ADS  Google Scholar 

  68. Czakon, M., Mitov, A.: NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. JHEP 1301, 080 (2013)

    Article  ADS  Google Scholar 

  69. Czakon, M., Fiedler, P., Mitov, A.: Total top-quark pair-production cross section at hadron colliders through \(O(\alpha ^{4}_{S})\). Phys. Rev. Lett. 110, 252004 (2013)

    Article  ADS  Google Scholar 

  70. Beneke, M., Falgari, P., Klein, S., Schwinn, C.: Hadronic top-quark pair production with NNLL threshold resummation. Nucl. Phys. B 855, 695–741 (2012)

    Article  ADS  MATH  Google Scholar 

  71. Cacciari, M., Czakon, M., Mangano, M., Mitov, A., Nason, P.: Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys. Lett. B 710, 612–622 (2012)

    Article  ADS  Google Scholar 

  72. Czakon, M., Mitov, A.: Top++: a program for the calculation of the top-pair cross-section at hadron colliders. Comput. Phys. Commun. 185, 2930 (2014)

    Article  ADS  Google Scholar 

  73. Aliev, M., Lacker, H., Langenfeld, U., Moch, S., Uwer, P., et al.: HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR. Comput. Phys. Commun. 182, 1034–1046 (2011)

    Article  ADS  MATH  Google Scholar 

  74. Kant, P., Kind, O., Kintscher, T., Lohse, T., Martini, T., et al.: HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. Comput. Phys. Commun. 191, 74–89 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  75. Kuhn, J.H., Scharf, A., Uwer, P.: Electroweak corrections to top-quark pair production in quark-antiquark annihilation. Eur. Phys. J. C 45, 139–150 (2006)

    Article  ADS  Google Scholar 

  76. Kuhn, J.H., Scharf, A., Uwer, P.: Electroweak effects in top-quark pair production at hadron colliders. Eur. Phys. J. C 51, 37–53 (2007)

    Article  ADS  Google Scholar 

  77. Kühn, J.H., Scharf, A., Uwer, P.: Weak interactions in top-quark pair production at hadron colliders: an update. Phys. Rev. D 91(1), 014020 (2015)

    Article  ADS  Google Scholar 

  78. Kidonakis, N.: Differential and total cross sections for top pair and single top production. In: Proceedings, 20th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012), pp. 831–834 (2012)

    Google Scholar 

  79. Kidonakis, N.: Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-. Phys. Rev. D 82, 054018 (2010)

    Article  ADS  Google Scholar 

  80. Guzzi, M., Lipka, K., Moch, S.-O.: Top-quark pair production at hadron colliders: differential cross section and phenomenological applications with DiffTop. JHEP 1501, 082 (2015)

    Article  ADS  Google Scholar 

  81. Campbell, J.M., Ellis, R.: MCFM for the Tevatron and the LHC. Nucl. Phys. Proc. Suppl. 205–206, 10–15 (2010)

    Article  Google Scholar 

  82. Frixione, S., Nason, P., Webber, B.R.: Matching NLO QCD and parton showers in heavy flavor production. JHEP 0308, 007 (2003)

    Article  ADS  Google Scholar 

  83. Alioli, S., Hamilton, K., Nason, P., Oleari, C., Re, E.: Jet pair production in POWHEG. JHEP 1104, 081 (2011)

    Article  ADS  MATH  Google Scholar 

  84. Frederix, R., Frixione, S., Maltoni, F., Stelzer, T.: Automation of next-to-leading order computations in QCD: the FKS subtraction. JHEP 0910, 003 (2009)

    Article  ADS  Google Scholar 

  85. Czakon, M., Fiedler, P., Mitov, A.: Resolving the tevatron top quark forward-backward asymmetry puzzle: fully differential next-to-next-to-leading-order calculation. Phys. Rev. Lett. 115, 052001 (2015)

    Article  ADS  Google Scholar 

  86. Kidonakis, N.: High order corrections and subleading logarithms for top quark production. Phys. Rev. D 64, 014009 (2001)

    Article  ADS  Google Scholar 

  87. Kidonakis, N., Laenen, E., Moch, S., Vogt, R.: Sudakov resummation and finite order expansions of heavy quark hadroproduction cross-sections. Phys. Rev. D 64, 114001 (2001)

    Article  ADS  Google Scholar 

  88. Kidonakis, N.: A Unified approach to NNLO soft and virtual corrections in electroweak, Higgs, QCD, and SUSY processes. Int. J. Mod. Phys. A 19, 1793–1821 (2004)

    Article  ADS  Google Scholar 

  89. Kidonakis, N., Vogt, R.: Next-to-next-to-leading order soft gluon corrections in top quark hadroproduction. Phys. Rev. D 68, 114014 (2003)

    Article  ADS  Google Scholar 

  90. Kidonakis, N.: Next-to-next-to-next-to-leading-order soft-gluon corrections in hard-scattering processes near threshold. Phys. Rev. D 73, 034001 (2006)

    Article  ADS  Google Scholar 

  91. Kidonakis, N., Vogt, R.: The Theoretical top quark cross section at the Tevatron and the LHC. Phys. Rev. D 78, 074005 (2008)

    Article  ADS  Google Scholar 

  92. Kidonakis, N.: Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution. Phys. Rev. D 82, 114030 (2010)

    Article  ADS  Google Scholar 

  93. Czakon, M., Mitov, A., Sterman, G.F.: Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log. Phys. Rev. D 80, 074017 (2009)

    Article  ADS  Google Scholar 

  94. Campbell, J.M., Ellis, R.K.: Top-quark processes at NLO in production and decay (2012). arXiv:1204.1513

  95. Melnikov, K., Schulze, M.: NLO QCD corrections to top quark pair production and decay at hadron colliders. JHEP 0908, 049 (2009)

    Article  ADS  Google Scholar 

  96. Bernreuther, W., Si, Z.-G.: Distributions and correlations for top quark pair production and decay at the Tevatron and LHC. Nucl. Phys. B 837, 90–121 (2010)

    Article  ADS  MATH  Google Scholar 

  97. Sjostrand, T., Mrenna, S., Skands, P.Z.: PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006)

    Article  ADS  Google Scholar 

  98. Field, R.: Min-bias and the underlying event at the LHC. Acta Phys. Polon. B 42, 2631–2656 (2011)

    Article  Google Scholar 

  99. CMS Collaboration: Study of the underlying event at forward rapidity in pp collisions at \(\sqrt{s}\) = 0.9, 2.76, and 7 TeV. JHEP 072, 1304 (2013)

    Google Scholar 

  100. Pumplin, J., Stump, D.R., Huston, J., Lai, H.L., Nadolsky, P.M., Tung, W.K.: New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002)

    Article  ADS  Google Scholar 

  101. Skands, P.Z.: Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010)

    Article  ADS  Google Scholar 

  102. Jadach, S., Was, Z., Decker, R., Kuhn, J.H.: The tau decay library TAUOLA: Version 2.4. Comput. Phys. Commun. 76, 361–380 (1993)

    Article  ADS  Google Scholar 

  103. Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., Stelzer, T.: MadGraph 5: going beyond. JHEP 1106, 128 (2011)

    Article  ADS  MATH  Google Scholar 

  104. Frixione, S., Laenen, E., Motylinski, P., Webber, B.R.: Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations. JHEP 0704, 081 (2007)

    Article  ADS  Google Scholar 

  105. Mrenna, S., Richardson, P.: Matching matrix elements and parton showers with HERWIG and PYTHIA. JHEP 05, 040 (2004)

    Article  ADS  Google Scholar 

  106. Nason, P.: A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 0411, 040 (2004)

    Article  ADS  Google Scholar 

  107. Frixione, S., Nason, P., Oleari, C.: Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 0711, 070 (2007)

    Article  ADS  Google Scholar 

  108. Alioli, S., Nason, P., Oleari, C., Re, E.: NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. JHEP 09, 111 (2009). [Erratum: JHEP02,011(2010)]

    Google Scholar 

  109. Alioli, S., Nason, P., Oleari, C., Re, E.: A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 1006, 043 (2010)

    Article  ADS  MATH  Google Scholar 

  110. Re, E.: Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C 71, 1547 (2011)

    Article  ADS  Google Scholar 

  111. Campbell, J.M., Ellis, R.K.: \(t \bar{t} W^{\pm }\) production and decay at NLO. JHEP 1207, 052 (2012)

    Article  ADS  Google Scholar 

  112. Garzelli, M., Kardos, A., Papadopoulos, C., Trócsányi, Z.: \(t\bar{t}\) \(W^{\pm }\) and \(t\bar{t}\) Z Hadroproduction at NLO accuracy in QCD with Parton Shower and Hadronization effects. JHEP 1211, 056 (2012)

    Article  ADS  Google Scholar 

  113. Li, Y., Petriello, F.: Combining QCD and electroweak corrections to dilepton production in FEWZ. Phys. Rev. D 86, 094034 (2012)

    Article  ADS  Google Scholar 

  114. Agostinelliae, S. et al.: Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003)

    Google Scholar 

  115. Allison, J.E.A.: Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kieseler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kieseler, J. (2016). Introduction to Top Quark Production and Decay in Proton-Proton Collisions. In: Top-Quark Pair Production Cross Sections and Calibration of the Top-Quark Monte-Carlo Mass. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-40005-1_2

Download citation

Publish with us

Policies and ethics