Skip to main content

Acid–Base Regulation and Ammonia Excretion in Cephalopods: An Ontogenetic Overview

  • Chapter
  • First Online:
Acid-Base Balance and Nitrogen Excretion in Invertebrates

Abstract

Among invertebrates cephalopods have evolved a high degree of behavioral and physiological complexity that is comparable to that found in vertebrates. This high-performance lifestyle, including well-developed sensory and locomotory abilities, is directly associated with high energetic costs that require efficient metabolic and regulatory pathways to maintain body homeostasis. Amino acid catabolism is the major energy source in cephalopods with ammonia being the major metabolic end product. Furthermore strong fluctuations in extracellular pH during exercise have led to the presence of ion-regulatory epithelia that highly express a conserved set of ion transporters to mediate extracellular acid–base homeostasis and excretion of nitrogenous waste products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht J (2007) Ammonia toxicity in the central nervous system. In: Lajtha A, Oja SS, Schousboe A, Saransaari P (eds) Handbook of neurochemistry and molecular neurobiology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Arnold JM (1965) Normal embryonic stages of the squid, Loligo pealii (Lesueur). Biol Bull 128:24–32

    Article  Google Scholar 

  • Bonnaud L, Franko D, Vouillot L, Bouteau F (2013) A study of the electrical polarization of Sepia officinalis yolk envelope, a role for Na+/K+-ATPases in osmoregulation? Comm Integr Biol 6:26035

    Google Scholar 

  • Boron WF (2006) Acid-base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382

    Article  CAS  PubMed  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1988) Comparative aspects of ammonia excretion in cephalopods. Malacologica 29:145–151

    Google Scholar 

  • Boucher-Rodoni R, Mangold K (1989) Respiration and nitrogen excretion by the squid Loligo forbesi. Mar Biol 103:333–338

    Article  Google Scholar 

  • Boucher-Rodoni R, Mangold K (1994) Ammonia production in cephalopods, physiological and evolutionary aspects. Mar Fresh Behav Physiol 25:53–60

    Article  Google Scholar 

  • Brix O, Bardgard A, Cau A, Colosimo SGC, Giardina B (1989) Oxygen-binding properties of cephalopod blood with special reference to environmental temperatures and ecological distribution. J Exp Zool 252:34–42

    Article  Google Scholar 

  • Budelmann BU (1988) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 757–782

    Chapter  Google Scholar 

  • Budelmann BU, Schipp R, von Boletzky S (1997) Cephalopoda. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates. Wiley-Liss, New York

    Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Caldeira K (2008) Atmospheric CO2 stabilization and ocean acidification. Geophys Res Lett 35:L09591. doi:10.1029/2008GL035072

    Google Scholar 

  • Charmantier G, Charmantier-Daures M (2001) Ontogeny of osmoregulation in crustaceans: the embryonic phase. Amer Zool 41:1078–1089

    Google Scholar 

  • Checkley J, David M, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 324:1683

    Article  CAS  PubMed  Google Scholar 

  • Cronin ER, Seymour RS (2000) Respiration of the eggs of the giant cuttlefish Sepia apama. Mar Biol 136:863–870

    Article  Google Scholar 

  • De Leersnyder M, Lemaire J (1972) Sur la composition minérale du liquide périembryonnaire de l’oef de Sepia officinalis L. Cah Biol Mar 13:429–431

    Google Scholar 

  • De Robertis EM, Kuroda H (2004) Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20:285–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Decleir W, Lemaire J, Richard A (1971) The differentiation of blood proteins during ontogeny in Sepia officinalis L. Comp Biochem Physiol B 40:923–928

    CAS  Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961) The buoyancy of the cuttlefish, Sepia officinalis (L.). J Mar Biol Assoc UK 41:319–342

    Article  Google Scholar 

  • Donaubauer HH (1981) Sodium- and potassium-activated adenosine triphosphatase in the excretory organs of Sepia officinalis (Cephalopoda). Mar Biol 63:143–150

    Article  CAS  Google Scholar 

  • Dorey N, Melzner F, Martin S, Oberhänsli F, Teyssié JL, Bustamante P, Gattuso JP, Lacoue-Labarthe T (2013) Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis. Mar Biol 160:2007–2022

    Article  CAS  Google Scholar 

  • Dupont S, Ortega-Martinez O, Thorndyke MC (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462

    Article  CAS  PubMed  Google Scholar 

  • Emanuel CF, Martin AW (1956) The composition of octopus renal fluid. J Comp Physiol 39:226–234

    CAS  Google Scholar 

  • Endeward V, Cartron JP, Ripoche P, Gros G (2008) RhAG protein of the Rhesus complex is a CO2 channel in the human red cell membrane. FASEB J 22:64–73

    Article  CAS  PubMed  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  PubMed  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. J Mar Sci 65:414–432

    CAS  Google Scholar 

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492

    Article  CAS  PubMed  Google Scholar 

  • Fehsenfeld S, Weihrauch D (2013) Differential acid-base regulation in various gills of the green crab Carcinus maenas: effects of elevated environmental pCO2. Comp Biochem Physiol A 164(1):54–65. doi:10.1016/j.cbpa.2012.09.016

    Article  CAS  Google Scholar 

  • Gilmour KM, Perry SF (2009) Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212:1647–1661

    Article  CAS  PubMed  Google Scholar 

  • Gruswitz F, Chaudhary S, Ho JD, Schlessinger A, Pezeshki B, Ho CM, Sali A, Westhoff CM, Stroud RM (2010) Function of human Rh based on structure of RhCG at 2.1 Å. Proc Natl Acad Sci 107:9638–9643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  CAS  PubMed  Google Scholar 

  • Gutowska MA, Melzner F (2009) Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2. Mar Biol 156:515–519

    Article  CAS  Google Scholar 

  • Gutowska MA, Pörtner HO, Melzner F (2008) Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Mar Ecol Prog Ser 373:303–309

    Article  CAS  Google Scholar 

  • Gutowska MA, Melzner F, Langenbuch M, Bock C, Claireaux G, Pörtner HO (2010a) Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. J Comp Physiol B 180:323–335

    Article  CAS  PubMed  Google Scholar 

  • Gutowska MA, Melzner F, Pörtner HO, Meier S (2010b) Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar Biol 157:1653–1663

    Article  CAS  Google Scholar 

  • Hanlon RT (1990) Maintenance, rearing, and culture of teuthoid and sepioid squids. In: Gilbert DL, Adelman JW, Arnold JM (eds) Squid as experimental animals. Plenum Press, New York

    Google Scholar 

  • Hanstein S, de Beer D, Felle HH (2001) Miniaturized carbon dioxide sensor designed for measurements within plant leaves. Sens Actuators B 81:107–114

    Article  CAS  Google Scholar 

  • Heisler N (1986) Acid-base regulation in animals. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Henry RP (1984) The role of carbonic anhydrase in blood ion and acid-base regulation. Amer Zool 24:241–251

    Article  CAS  Google Scholar 

  • Henry RP (1988) Multiple functions of carbonic anhydrase in the crustacean gill. J Exp Zool 248:19–24

    Article  CAS  Google Scholar 

  • Henry RP, Lucu C, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao CD, You MS, Guh YJ, Ma M, Jiang YJ, Hwang PP (2007) A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS One 2:e302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu MY, Yan HY, Chung WS, Shiao YC, Hwang PP (2009) Acoustically evoked potential in two cephalopods inferred using the auditory brainstem response (ABR) approach. Comp Biochem Physiol 153:278–283

    Article  CAS  Google Scholar 

  • Hu MY, Sucré E, Charmantier-Daures M, Charmantier G, Lucassen M, Melzner F (2010) Localization of ion regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tiss Res 441:571–583

    Article  CAS  Google Scholar 

  • Hu MY, Tseng YC, Lin LY, Chen PY, Charmantier-Daures M, Hwang PP, Melzner F (2011a) New insights into ion regulation of cephalopod molluscs: a role of epidermal ionocytes in acid-base regulation during embryogenesis. Am J Physiol Regul Integr Comp Physiol 301:1700–1709

    Article  CAS  Google Scholar 

  • Hu MY, Tseng YC, Stumpp M, Gutowska MA, Kiko R, Lucassen M, Melzner F (2011b) Elevated seawater pCO2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 300:R1100–R1114

    Article  CAS  PubMed  Google Scholar 

  • Hu MY, Lee JR, Lin LY, Shih TH, Stumpp M, Lee MF, Hwang PP, Tseng YC (2013) Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Front Zool 10:51–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu MY, Guh Y-J, Stumpp M, Lee JR, Chen RD, Sung PH, Chen YC, Hwang PP, Tseng YC (2014) Branchial NH4 +-dependent acid-base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Front Zool 11:55–72

    Google Scholar 

  • Hu MY, Hwang PP, Tseng YC (2015) Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods. Tissue Barriers 3:4

    Article  CAS  Google Scholar 

  • Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A 148:479–497

    Article  CAS  Google Scholar 

  • Jänicke M, Carney TJ, Hammerschmidt M (2007) Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol 307:258–271

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MB, Mooney TA, McCorkle DC, Cohen A (2013) Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii). PLos ONA 8:e63714

    Article  CAS  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896

    Article  Google Scholar 

  • Kustu S, Inwood W (2006) Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus) proteins are CO2 channels. Transfus Clin Biol 13:103–110

    Article  CAS  PubMed  Google Scholar 

  • Lacoue-Labarthe T, Martin S, Oberhänsli F, Teyssié JL, Markich J, Jeffree R, Bustamante P (2009) Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis. Biogeosci 6:2561–2573

    Article  CAS  Google Scholar 

  • Langenbuch M, Pörtner HO (2002) Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nududs under conditions of environmental hypercapnia: identifying effective acid-base variables. J Exp Biol 205:1153–1160

    CAS  PubMed  Google Scholar 

  • Larsen EH, Deaton LE, Onken H, O’Donnell M, Grosell M, Dantzler WH, Weihrauch D (2014) Osmoregulation and excretion. Compr Physiol 4:405–573

    Article  PubMed  Google Scholar 

  • Lee YC, Yan JJ, Cruz SA LHJ, Hwang PP (2011) Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Regul Integr Comp Physiol 300:C295–C307

    Article  CAS  Google Scholar 

  • Lin CC, Lin LY, Hsu H, Prunet P, Horng J, Hwang PP (2012) Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Integr Comp Physiol 15:R283–R291

    Article  CAS  Google Scholar 

  • Lindskog S, Henderson LE, Kannan KK, Liljas A, Nyman PO, Strandberg B (1971) Carbonic anhydrase. In: Boyer PD (ed) The enzymes. Academic Press, New York

    Google Scholar 

  • Liu ST, Tsung L, Horng JL, Lin LY (2013) Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. Am J Physiol Regul Integr Comp Physiol 305:242–251

    Article  CAS  Google Scholar 

  • Llpiński MR (2010) Cephalopod life cycles: patterns and exceptions. S Afr J Mar Sci 20:439–447

    Article  Google Scholar 

  • Lykkeboe G, Johansen K (1982) A cephalopod approach to rethinking about the importance of the Bohr and Haldane effects. Pacific Sci 36:305–313

    Google Scholar 

  • Maneja RH, Piatkowski U, Melzner F (2011) Effects of ocean acidification on statolith calcification and prey capture in early life cuttlefish, Sepia officinalis. J Shellfish Res 30:1011

    Google Scholar 

  • Martin M, Fehsenfeld S, Sourial MM, Weihrauch D (2011) Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol A 160:267–277

    Article  CAS  Google Scholar 

  • Meijer AJ, Lamers WH, Chamuleau RAFM (1990) Nitrogen metabolism and ornithine cycle function. Physiol Rev 70:701–748

    CAS  PubMed  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosci 6:2313–2331

    Article  CAS  Google Scholar 

  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888

    Article  CAS  Google Scholar 

  • Miller DC, Poucher S, Cardin JA, Hansen D (1990) The acute and chronic toxicity of ammonia to marine fish and mysid. Arch Environ Contam Toxicol 19:40–48

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Leclerc C (2004) The choice between epidermal and neural fate: a matter of calcium. Int J Dev Biol 48:75–84

    Article  CAS  PubMed  Google Scholar 

  • O’Dor RK (2002) Telemetered cephalopod energetics: swimming, soaring, and blimping. Integr Comp Biol 42:1065–1070

    Article  PubMed  Google Scholar 

  • O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605

    Article  Google Scholar 

  • Pecl GT, Steer MA, Hodgson KE (2004) The role of hatchling size in generating the intrinsic size-at-age variability of cephalopods: extending the Forsythe hypothesis. Mar Freshw Res 55:387–394

    Article  Google Scholar 

  • Piermarini PM, Choi I, Boron WF (2006) Cloning and characterization of an electrogenic Na/HCO3 - cotransporter from the squid giant fiber lobe. Am J Physiol Cell Physiol 292:C2023–C2045

    Google Scholar 

  • Portmann A (1926) Der embryonale Blutkreislauf und die Dotterresorption bei Loligo vulgaris. Z Morph u Ökol Tiere 5:406–423

    Article  Google Scholar 

  • Pörtner HO (1990) An analysis of the effects of pH on oxygen binding by squid (Illex illecebrosus, Loligo pealei) haemocyanin. J Exp Biol 150:407–424

    Google Scholar 

  • Pörtner HO (1994) Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods. Mar Fresh Behav Physiol 25:131–148

    Article  Google Scholar 

  • Pörtner H-O, Zielinski S (1998) Environmental constraints and the physiology of performance in squids. S Afr J Mar Sci 20:207–221

    Article  Google Scholar 

  • Pörtner HO, Webber DM, Boutilier RG, O’Dor RK (1991) Acid-base regulation in exercising squid (Illex illecebrosus, Loligo pealei). Am J Physiol Regul Integr Comp Physiol 261:R239–R246

    Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Atmos Oceanic Tech 60:705–718

    Google Scholar 

  • Potts WTW (1965) Ammonia excretion in Octopus dofleini. Comp Biochem Physiol 14:339–355

    Article  CAS  PubMed  Google Scholar 

  • Potts WTW (1994) Kinetics of sodium uptake in freshwater animals – a comparison of ion exchange and proton pump hypotheses. Am J Physiol 266:R315–R320

    CAS  PubMed  Google Scholar 

  • Randall DJ, Tsui TK (2002) Ammonia toxicity in fish. Mar Poll Bull 45:17–23

    Article  CAS  Google Scholar 

  • Ries JB, Cohen AI, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geol Soc Am 37:1131–1134

    CAS  Google Scholar 

  • Robertson JD (1949) Ionic regulation in some marine invertebrates. J Exp Biol 26:182–200

    CAS  PubMed  Google Scholar 

  • Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3 transporters. Eur J Physiol 447:495–509

    Article  CAS  Google Scholar 

  • Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci U S A 105:20776–20780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa R, Trübenbach K, Repolho T, Pimentel M, Faleiro F, Boavida-Portugal J, Baptista M, Lopes VM, Dionísio G, Leal MC, Calado R, Pörtner HO (2013) Lower hypoxia thresholds of cuttlefish early life stages living in a warm acidified ocean. Proc Roy Soc B 280:20131695

    Article  CAS  Google Scholar 

  • Rosa R, Trübenbach K, Pimentel M, Boavida-Portugal J, Faleiro F, Baptista M, Dionísio G, Calado R, Pörtner HO, Repolho T (2014) Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). J Exp Biol 15:518–525

    Article  CAS  Google Scholar 

  • Schipp R, von Boletzky S (1976) The pancreatic appendages of dibranchiate cephalopods. Zoomorph 86:81–98

    Article  Google Scholar 

  • Schipp R, Mollenhauer S, Boletzky S (1979) Electron microscopical and histochemical studies of differentiation and function of the cephalopod gill (Sepia officinalis L.). Zoomorph 93:193–207

    Article  Google Scholar 

  • Seibel BA, Goffredi S, Thuesen EV, Childress J, Robison BH (2004) Ammonium content and buoyancy in midwater cephalopods. J Exp Mar Biol Ecol 313:375–387

    Article  CAS  Google Scholar 

  • Seymour RS, Bradford DF (1994) Gas exchange through the jelly capsule of the terrestrial eggs of the frog, Pseudophryne bibroni. J Comp Physiol B 157:477–481

    Article  Google Scholar 

  • Sherrard KM (2000) Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol Bull 198:404–414

    Article  CAS  PubMed  Google Scholar 

  • Shih TH, Horng JL, Hwang PP, Lin LY (2008) Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295:C1625–C1632

    Article  CAS  PubMed  Google Scholar 

  • Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  • Smith MR, Caron J-B (2010) Primitive soft-bodied cephalopods from the Cambrian. Nature 465:469–472

    Article  CAS  PubMed  Google Scholar 

  • Soupene E, King N, Field E, Liu P, Niyogi KK, Huang CH, Kustu S (2002) Rhesus expression in a green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci U S A 99:7769–7773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soupene E, Inwood W, Kustu S (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci U S A 101:7787–7792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel A, Hu MY, Gutowska MA, Lieb B, Lucassen M, Melzner F, Pörtner HO, Mark FC (2012) Influence of temperature, hypercapnia, and development on the relative expression of different hemocyanin isoforms in the common cuttlefish Sepia officinalis. J Exp Zool A 317:511–523

    Article  CAS  Google Scholar 

  • Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST (2011) CO2 induced seawater acidification impacts sea urchin larval development: elevated metabolic rates decrease scope for growth and induce developmental delay. Comp Biochem Physiol A 160:331–340

    Article  CAS  Google Scholar 

  • Stumpp M, Trübenbach K, Brennecke D, Hu MY, Melzner F (2012) Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aqua Toxicol 110–111:194–207

    Article  CAS  Google Scholar 

  • Virkki LV, Choi I, Davis BA, Boron WF (2002) Cloning of a Na+-driven Cl/HCO3 - exchanger from squid giant fiber lobe. Am J Physiol Cell Physiol 285:C771–C780

    Article  Google Scholar 

  • von Boletzki S (1987a) Embryonic phase. In: Boyle RP (ed) Cephalopod lifecycles. Academic Press, London, pp 5–31

    Google Scholar 

  • von Boletzki S (1987b) Ontogenetic and phylogenetic aspects of the cephalopod circulatory system. Experientia 43:478–483

    Article  Google Scholar 

  • Wagner CA, Finberg KE, Breton S, Marshanski V, Brown D, Geibel JP (2003) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  Google Scholar 

  • Wagner CA, Devuyst O, Belge H, Bourgeois S, Houillier P (2011) The rhesus protein Rhcg: a new perspective in ammonium transport and distal urinary acidification. Kidney Int 79:154–161

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Niida M, Maruyama T, Kaneko T (2008) Na+/H+ exchanger isoform 3 expressed in apical membrane of gill mitochondrion-rich cells in Mozambique tilapia Oreochromis mossambicus. Fish Sci 74:813–821

    Google Scholar 

  • Weihrauch D (2006) Active ammonia absorption in the midgut of the larvae of the tobacco hornworm Manduca sexta L.: transport studies and mRNA expression analysis of a Rhesus-like ammonia transporter. Insect Biochem Mol Biol 36:808–821

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Morris S, Towle DW (2004) Ammonia excretion in aquatic and terrestrial crabs. J Exp Biol 207:4491–4504

    Article  CAS  PubMed  Google Scholar 

  • Weihrauch D, Wilkie MP, Walsh PJ (2009) Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol 212:1716–1730

    Article  CAS  PubMed  Google Scholar 

  • Weiner ID, Verlander JW (2013) Renal ammonia metabolism and transport. Compr Physiol 3:201–210

    PubMed  PubMed Central  Google Scholar 

  • Wells MJ (1990) Oxygen extraction and jet propulsion in cephalopods. Can J Zool 68:815–824

    Article  Google Scholar 

  • Wells JM, O’Dor RK (1991) Jet propulsion and the evolution of the cephalopods. Bull Mar Sci 49:419–432

    Google Scholar 

  • Wells MJ, Wells J (1982) Ventilatory currents in the mantle of cephalopods. J Exp Biol 99:315–330

    Google Scholar 

  • Wright P (1995) Nitrogen excretion: three end products, many physiological roles. J Exp Biol 198:273–281

    CAS  PubMed  Google Scholar 

  • Wright PA, Wood CM (2009) A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. J Exp Biol 212:2303–2312

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Horng JL, Liu ST, Hwang PP, Wen ZH, Lin CS, Lin LY (2010) Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol 298:C237–C250

    Article  CAS  PubMed  Google Scholar 

  • Yan JJ, Chou MY TK, Hwang PP (2007) Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293:C1814–C1823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hu, M., Tseng, YC. (2017). Acid–Base Regulation and Ammonia Excretion in Cephalopods: An Ontogenetic Overview. In: Weihrauch, D., O’Donnell, M. (eds) Acid-Base Balance and Nitrogen Excretion in Invertebrates. Springer, Cham. https://doi.org/10.1007/978-3-319-39617-0_11

Download citation

Publish with us

Policies and ethics