Skip to main content

Non-catalytic Processes, Combustion, Gasification and Chemical Looping

  • Chapter
  • First Online:
Fluidized-Bed Reactors: Processes and Operating Conditions

Part of the book series: Particle Technology Series ((POTS,volume 26))

  • 2022 Accesses

Abstract

In the processes to be considered here the advantageous features of fluidized beds noted in the previous Chapter are again in evidence. The high degree of solids mixing in multi-component systems such as are used in the chloride process for titanium dioxide and the consequent isothermal nature of the reacting mixture are highly desirable features and are exploited to the full in reactor design. The ability to transfer fluidized solids between reactors is exploited in the treatment processes of uranium compounds leading to the production of uranium dioxide for use in nuclear reactors. These are described along with processes for the production of hydrogen chloride and ultra-pure silicon while fluid coking and sulphide ore roasting are touched on briefly. The fluidized-bed combustion of coal is treated in detail with sections on plant developments, combustion mechanisms, desulfurization and sulfation models. Coal gasification is also considered and the chapter ends with an extended section on the relatively new technique of chemical looping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adanez J, Gayan P, Garcia-Labiano F, de Diego LF (1994) Axial voidage profiles in fast fluidized beds. Powder Tech 85(1):259–268

    Article  Google Scholar 

  • Adanez J, Gayan P, Celaya J, de Diego LF, Garcia-Labiano F, Abad A (2006) Chemical looping combustion in a 10 kWth prototype using CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Ind Eng Chem Res 45:6075–6080

    Article  Google Scholar 

  • Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical looping combustion and reforming technologies. Prog Energy Comb Sci 38:215–282

    Article  Google Scholar 

  • Agarwal PK (1986) A single particle model for the evolution and combustion of coal volatiles. Fuel 65:803–810

    Article  Google Scholar 

  • Anderson KD, Manaker AM, Jr Stephans EA (1997) Operating experience of the Tennessee Valley Authority’s 160 MW atmospheric fluidized combustion unit. In: Proceedings of fourteenth international conference on fluidized bed combustion. ASME, New York, pp 39–45

    Google Scholar 

  • Avedesian MM, Davidson JF (1973) Combustion of carbon particles in a fluidized bed. Trans I Chem E 51:121

    Google Scholar 

  • Basu P (2006) Combustion and gasification in fluidized beds. Taylor & Frances, Florida

    Book  Google Scholar 

  • Basu P, Halder PK (1989) Combustion of single carbon particles in a fast fluidized bed of fine particles. Fuel 68:1056–1063

    Article  Google Scholar 

  • Basu P, Broughton J, Elliott DE (1975) Coal combustion in fluidized beds. Inst Fuel Symp Ser No 1 1(A3)

    Google Scholar 

  • Berguerand N, Lyngfelt A (2008) Design and operation of a 10 kWth chemical looping combustor for solid fuels—Testing with South African coal. Fuel 87:2713–2726

    Article  Google Scholar 

  • Bishop JW (1970) Proceedings second international conference on fluidized bed combustion paper. US-EPA, pp 4–4

    Google Scholar 

  • Borghi G, Sarofim AF, Beer JM (1977) A mechanistic model of coal combustion in fluidized beds. AIChE 70th annual meeting, New York

    Google Scholar 

  • Borgwardt RH, Harvey RD (1972) Properties of carbonate rock related to sulphur dioxide activity. Environ Sci Tech 6:350

    Article  Google Scholar 

  • Breault RW (2010) Gasification processes old and new: a basic review of the major technologies. Energies 3:216–240

    Article  Google Scholar 

  • Brereton C (1997) Combustion performance. Chapter 10 in circulating fluidized beds. In: Grace JR, Avidan A, Knowlton TM (eds) Blackie academic & professional, London

    Google Scholar 

  • Brown TA, Dennis JS, Scott SA, Davidson JF, Hayhurst AN (2010) Gasification and chemical-looping combustion of a lignite char in a fluidized bed of iron oxide. Energy Fuels 24:3034–3048

    Article  Google Scholar 

  • Carlson GA, Mitchell RF (1971) Method of chlorinating titanium bearing minerals. U S Patent 3591333

    Google Scholar 

  • Castleman III JM (1985) Process performance of the TVA 20 MW atmospheric fluidized-bed plant. In: Proceedings of eighth international conference on fluidized bed combustion. ASME, New York, pp 196–207

    Google Scholar 

  • Cessaroli B, Lohne O (2011) Solar grade silicon feedstock. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, New York (Chapter 5)

    Google Scholar 

  • Cho P, Mattisson T, Lyngfelt A (2004) Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel 83:1225–1245

    Article  Google Scholar 

  • Cho P, Mattisson T, Lyngfelt A (2005) Carbon formation on nickel- and iron oxide-containing oxygen carriers for chemical looping combustion. Ind Eng Chem Res 44:668–676

    Article  Google Scholar 

  • Coutourier MF, Marquis DL, Steward FR, Volmeranger Y (1994) Reactivation of partially sulfated limestone from a CFB combustor by hydration. Canadian J Chem Eng 72:91–97

    Article  Google Scholar 

  • Davidson JF (2000) Circulating fluidized bed hydrodynamics. Powder Tech 113:249–260

    Article  Google Scholar 

  • Dennis JS, Hayhurst AN (1990) Mechanism of the sulfation of calcined particles in combustion gases. Chem Eng Sci 45:1175–1187

    Article  Google Scholar 

  • Dry RJ, Beeby CJ (1997) Applications of CFB technology to gas-solid reactions. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating fluidized beds. Blackie A&M, London (Chapter 12)

    Google Scholar 

  • Elkins JW (1989) State of the research for atmospheric nitrous oxide (N2O). In: Paper contributed to the International Panel on Climate Change, Boulder, Colorado

    Google Scholar 

  • Elkins TS (1997) Process for controlling the temperature of a fluidized-bed reactor in the manufacture of titanium tetrachloride. U S Patent 5670121

    Google Scholar 

  • Elliot DE (1970) Proceedings of second international conference on fluidized bed combustion: Paper 0-1. US-E{PA

    Google Scholar 

  • Fan LS (2010) Chemical-looping systems for fossil-energy conversions. Wiley-AIChE, New York

    Book  Google Scholar 

  • Fan LS, Li F (2010) Chemical looping technology and its fossil energy conversion applications. Ind Eng Chem Res 49:10200–10211

    Article  MathSciNet  Google Scholar 

  • Garcia-Labiano F, de Diego LF, Adanez J, Abad A, Gayan P (2005) Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system. Chem Eng Sci 60:852–862

    Article  Google Scholar 

  • Georgiakis C, Chang CW, Szelely J (1979) A changing grain size model for gas-solid reactions. Chem Eng Sci 34:1072–1075

    Article  Google Scholar 

  • Glaeser HH, Spoon MJ (1995) Fluidized-bed process for chlorinating titanium-containing materials and coke useful in such processes. U S Patent 5389353

    Google Scholar 

  • Glicksman LR (1997) Heat transfer in circulating fluidized beds. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating fluidized beds. Blackie Academic and Professional, London (Chapter 8)

    Google Scholar 

  • Grace JR (1990) High-velocity fluidized bed reactors. Chem Eng Sci 45(8):1953–1966

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  • Hamel S, Krumm W (2001) Mathematical modelling and simulation of bubbling fluidized-bed gasifiers. Powder Tech 120:105–112

    Article  Google Scholar 

  • Hansen PFB, Dam-Johansen K, Bank LH, Ostergard K (1991) Sulfur retention on limestone under fluidized-bed combustion conditions—an experimental study. In: Anthony EJ (ed) Proceedings of 11th international conference on fluid bed combustion, pp 281–291. ASME New York

    Google Scholar 

  • Hartge E-W, Li Y, Werther J (1986). Analysis of the local structure of the two-phase flow in a fast fluidized bed. In: Basu P (ed) Circulating fluidized bed technology. Pergamon, Toronto, pp 153–160

    Google Scholar 

  • Hartman M, Coughlin RW (1974) Reaction of sulphur dioxide with limestone and the influence of pore structure. Ind Eng Chem Proc Des Dev 13:248–253

    Article  Google Scholar 

  • Hartman M, Coughlin RW (1976) Reaction of sulphur dioxide with limestone and the grain model. AIChE J 22:490–498

    Article  Google Scholar 

  • Highley J (1975) A model of coal combustion in a fluidized bed. Inst Fuel Symp Ser No. 1, Vol 2: 37

    Google Scholar 

  • Higman C, van der Burgt M (2008) Gasification, 2nd edn. Gulf Publications, London

    Google Scholar 

  • Horio M (1997) Hydrodynamics. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating fluidized beds. Blackie Academic and Professional, London (Chapter 2)

    Google Scholar 

  • Horio M, Morishita K (1988) Flow regimes in high velocity fluidization. Jpn J Multiphase Flow 2:117–136

    Article  Google Scholar 

  • Hossain MM, de Lasa HI (2008) Chemical-looping combustion for inherent CO2 separations—a review

    Google Scholar 

  • Ishida M, Zheng D, Akehata T (1987) Evaluation of a chemical-looping-combustion-power-generation system by graphic-exergy analysis. Energy 12:147–154

    Article  Google Scholar 

  • Jazayeri B (2003) Applications for chemical production and processing. In: Yang W-C (ed) Handbook of fluidization and fluid-particle systems. Marcel Dekker, New York (Chapter 16)

    Google Scholar 

  • Jerndal E, Mattisson T, Lyngfelt A (2006) Thermal analysis of chemical-looping combustion. Chem Eng Res Des 84:795–806

    Article  Google Scholar 

  • Jin H, Ishida M (2004) A new type of coal gas fuelled chemical-looping combustion. Fuel 83:2411–2417

    Article  Google Scholar 

  • Johnsson JE (1989) A kinetic model for NOx formation in fluidized-bed combustion. In: Manaker A (ed) Proceedings of 10th international conference on fluid bed combustion. ASME, New York, p 1112

    Google Scholar 

  • Johnsson F (2007) Fluidized bed combustion for clean energy. In: Bi X, Berruti F, Pugsley T (eds) Engineering Conferences International, Fluidization XII, New York, pp 47–62

    Google Scholar 

  • Johnsson F, Leckner B (1995) Vertical distribution of solids in a CFB furnace. In: Proceedings of 13th ASME international conference on fluidized bed combustion, pp 61–79

    Google Scholar 

  • Johnsson F, Andersson S, Leckner B (1991) Expansion of a freely bubbling fluidized bed. Powder Tech 68(2):117–123

    Article  Google Scholar 

  • Kolbitsch P, Pröll T, Bolhar-Nordenkampf J, Hofbauer H (2009) Design of a chemical-looping combustor using a dual circulating fluidized-bed reactor system. Chem Eng Technol 32:398–403

    Article  Google Scholar 

  • Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Butterworth-Heinemann, Boston

    Google Scholar 

  • La Nauze RD (1985) Fundamentals of coal combustion. In: Davidson JF, Clift R, Harrison D (eds) Fluidization. Academic Press, London (Chapter 19)

    Google Scholar 

  • Leckner B (1998) Fluidized-bed combustion: mixing and pollutant limitation. Prog Energy Comb Sci 24:31–61

    Article  Google Scholar 

  • Leckner B, Szentanni P, Winter F (2011) Scale-up of fluidized-bed combustion—a review. Fuel 90:2951–2964

    Article  Google Scholar 

  • Lee YY (1997) Design considerations for CFB boilers. In: Grace JR, Avidan A, Knowlton TJ (eds) Circulating fluidized beds. Blackie Academic and Professional, London (Chapter 11)

    Google Scholar 

  • Leion H, Mattisson T, Lyngfelt A (2007) The use of petroleum coke as fuel in chemical-looping combustion. Fuel 86:1947–1958

    Article  Google Scholar 

  • Lewis WK, Gilliland ER (1954) Production of pure carbon dioxide. US Patent 2665972

    Google Scholar 

  • Li F, Fan L-S (2008) Clean coal conversion processes—progress and challenges. Energy Environ Sci 1:248–267

    Article  Google Scholar 

  • Linderholm C, Abad A, Mattisson T, Lyngfelt A (2008) 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. Int J of Greenhouse Gas Control 2:520–530

    Article  Google Scholar 

  • Louge M (1997) Experimental techniques. In: Grace JR, Avidan AA, Knowlton TM (eds) Circulating fluidized beds. Blackie Academic and Professional, London (Chapter 9)

    Google Scholar 

  • Luckos A, den Hoed P (2004) The carbochlorination of titaniferous feedstocks in a fluidized bed. In: Engineering Conferences International, Fluidization XI, New York, pp 555–562

    Google Scholar 

  • Lyngfelt A (2011) Oxygen carriers for chemical-looping combustion—400 h of operational experience. Oil Gas Sci Technol 66:161–172

    Article  Google Scholar 

  • Lyngfelt A, Leckner B (1989) Sulfur capture in fluidized-bed combustors: temperature dependence and lime conversion. J Inst Energy 62(450):62–72

    Google Scholar 

  • Lyngfelt A, Thunman H (2005) Construction and 100 hr of operational experience of a 10 kW chemical-looping combustor. In: Thomas DC, Benson SM (eds) Carbon dioxide capyure for storage in deep geologic formations. Elsevier, Oxford

    Google Scholar 

  • Lyngfelt A, Johansson M, Mattisson T (2008) Chemical-looping combustion—status of development. In: 9th International Conference on Circulating Fluidized Beds, Hamburg

    Google Scholar 

  • Mattisson T, Lyngfelt A (2001) Capture of CO2 using chemical-looping combustion. In: Proceedings of 1st Biennial Meeting of the Scandanavian-Nordic Section of the Combustion Institute, April 18–20, Göteborg, Sweden

    Google Scholar 

  • Mattisson T, Johansson M, Lyngfelt A (2006) The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel 85:736–747

    Article  Google Scholar 

  • Moritomi H, Suzuki Y (1992). Nitrous oxide formation under fluidized-bed cobbustion conditions. In: Potter O, Nicklin DJ (eds) Proceedings of 7th international conf on fluidization, United Eng Foundation, New York, pp 495–507

    Google Scholar 

  • Muschelknautz U, Muschelknautz E (1991) Special design of inserts and short entrance ducts to recirculating cyclones. In: Proceedings of international conference on circulating fluidized beds, pp 597–602

    Google Scholar 

  • Newby RA (2003) Applications for gasifiers and combustors. In: Yang W-C (ed) Handbook of fluidization and fluid-particle systems. Marcel Dekker, New York (Chapter 15)

    Google Scholar 

  • Oka SN (2004) Fluidized bed combustion. Marcel Dekker, Basel

    Google Scholar 

  • Palchonok GI, Breitholtz C, Thunman H, Leckner B (1997) Impact of heat and mass transfer on combustion of a fuel particle in CFB boilers. In: Proceedings of 14th international conference on fluidized bed combustion, pp 871–888

    Google Scholar 

  • Pallares D, Johnsson F (2006) Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds. Prog Energy and Comb Sci 32:539–569

    Article  Google Scholar 

  • Park D, Levenspiel O, Fitzgerald TJ (1980) A comparison of the plume model with currently used models for atmospheric fluidized bed combustors. Chem Eng Sci 35:295–301

    Article  Google Scholar 

  • Pröll T, Kolbitsch P, Bolhar-Nordenkampf J, hofbauer H (2009) A novel dual circulating fluidized-bed system for chemical-looping systems. AIChE J 55:3255–3266

    Google Scholar 

  • Rhodes MJ, Geldart D (1987) A model for the circulating fluidized bed. Powder Tech 53(3):155–162

    Article  Google Scholar 

  • Rhodes MJ, Zhou S, Hirama T (1991) Effects of operating conditions on longitudinal solids mixing in a circulating fluidized bed riser. AIChE J 37:1450–1458

    Article  Google Scholar 

  • Roberts AG, Stanton JE, Wilkins DM, Beacham B, Hog HR (1975) Combustion in fluidized beds. Inst fuel Symp Ser No. 1 1:D4

    Google Scholar 

  • Ross IB, Davidson JF (1982) The combustion of carbon particles in a fluidized bed. Trans IChemE 60:108

    Google Scholar 

  • Ross DP, Yan H-M, Zhong Z, Zhang D-K (2005) A non-isothermal model of a bubbling fluidized-bed coal gasifier. Fuel 84:1469–1481

    Article  Google Scholar 

  • Ryu H-J, Bae D-H, Han K-H, Lee S-Y, Jin G-T, Choi J-H (2001) Oxidation and reduction characteristics of oxygen-carrier particles and reaction kinetics by unreacted-core model. Korean J Chem Eng 18:831–837

    Article  Google Scholar 

  • Ryu H-J, Jo S-H, Park Y, Bae D-H, Kim S (2010) Long-term operational experience in a 50 kWth chemical-looping combustor using natural gas and syngas as fuels. In: Proceedings of 1st International conference on Chemical Looping, Lyon, France

    Google Scholar 

  • Sabino MEL, Passos ML, Branco JR (2013) Integrated fluidized-bed reactors for silicon production. In: Passos ML, Barrozo MAS, Mujumdar AS (eds) Fluidization engineering: practice (Chapter 6)

    Google Scholar 

  • Scott SA, Dennis JS, Hayhurst AN, Brown T (2006) In situ gasification of a solid fuel and CO2 separation using chemical looping. AIChE J 52:3325–3328

    Article  Google Scholar 

  • Sedor KE, Hossain MM, de Lasa HI (2008) Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion. Chem Eng Sci 63:2994–3007

    Article  Google Scholar 

  • Shen L, Wu J, Xiao J (2009) Experiments on chemical-looping combustion of coal with a NiO-based oxygen carrier. Combust Flame 156:721–728

    Article  Google Scholar 

  • Sinclair JL (1997) Hydrodynamic modelling. In: Grace JR, Avidan AA, Knowlton TK (eds) Circulating fluidized beds. Blackie Academic and Professional, London (Chapter 5)

    Google Scholar 

  • Skinner DG (1970) The fluidized combustion of coal. Mills and Boon, London

    Google Scholar 

  • Szekely J, Evans JW (1970) A structural model for gas-solid reactions with a moving boundary. Chem Eng Sci 25:1091–1107

    Article  Google Scholar 

  • Szekely J, Evans JW (1971) A structural model for gas-solid reactions with a moving boundary—II. The effect of grain size, porosity and temperature on the reaction of porous pellets. Chem Eng Sci 26:1901–1913

    Article  Google Scholar 

  • Takahashi M, Nakabayashi Y, Kimura N (1995) The 350 MWe Takehara plant. VGB Kraftwerkstech 75:427–434

    Google Scholar 

  • Thon A, Kramp M, Hartge E-U, Heinrich S, Werther J (2013) Operation of a coupled fluidized-bed system for CLC of solid fuels with a synthetic Cu-based oxygen carrier. In: Kuipers JAM, Mudde RF, van Ommen JR, Deen NG (eds) Fluidization XIV, pp 63–70. Eng Conf Int, New York

    Google Scholar 

  • Turnbaugh DT, Morris AJ, Perkins JB (2007) Method for the analysis of gas produced by a titanium tetrachloride fluidized-bed reactor. U S Patent 7183114

    Google Scholar 

  • Werther J (2005) Fluid dynamics, temperature and concentration fields in large-scale CFB combustors: 1–25. In: Kofa C (ed) Circulating fluidized bed technology, vol VIII. International Academic Publishers, Beijing, pp 1–25

    Google Scholar 

  • Werther J, Hirschberg B (1997) Solids motion and mixing. In: Grace JR, Avidan MM, Knowlton TM (eds) Circulating fluidized beds. Blackie A&P, London (Chapter 4)

    Google Scholar 

  • Winkler J (2003) Titanium dioxide. Vincentz Network, Hanover

    Google Scholar 

  • Yates JG (1983) Fundamentals of fluidized-bed chemical processes. Butterworths, London

    Google Scholar 

  • Zhang XY (1980) Proceedings of sixth international conference on fluidized bed combustion. Conf 800428, US Dept of Energy, Morgantown, pp 36–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Yates .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yates, J.G., Lettieri, P. (2016). Non-catalytic Processes, Combustion, Gasification and Chemical Looping. In: Fluidized-Bed Reactors: Processes and Operating Conditions. Particle Technology Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-39593-7_3

Download citation

Publish with us

Policies and ethics