Skip to main content

Cortical Models on Neuromorphic Hardware

  • Chapter
  • First Online:
Form Versus Function: Theory and Models for Neuronal Substrates

Part of the book series: Springer Theses ((Springer Theses))

  • 865 Accesses

Abstract

Along with the many advantages it offers, the neuromorphic approach also comes with limitations of its own. These have various causes that lie both in the hardware itself and the control software. We will later identify these causes, which we henceforth refer to as distortion mechanisms. The neural network emulated by the hardware device can therefore differ significantly from the original model, be it in terms of pulse transmission, connectivity between populations or individual neuron or synapse parameters.

As I see it, the only way of overcoming this magical view of what “I” and consciousness are is to keep on reminding oneself, unpleasant though it may seem, that the “teethering bulb of dread and dream” that nestles safely inside one’s own cranium is a purely physical object made up of completely sterile and inanimate components, all of which obey exactly the same laws that govern all the rest of the universe [...]. Only if one keeps bashing up against this disturbing fact can one slowly begin to develop a feel for the way out of the mystery of consciousness: that the key is not the stuff out of which brains are made, but the patterns that can come to exist inside the stuff of a brain.

Douglas Hofstadter, Gödel, Escher, Bach, 1999

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Orthogonal patterns are much more comfortable to study than non-orthogonal ones, since the response of the network to experimental scenarios such as pattern completion is easily classified as “correct” or “wrong”. However, allowing patterns to share MCs can greatly increase the memory capacity of the network, i.e., the number of patterns it can “correctly” recall under certain well-defined conditions, where the “correctness” is, itself, a parameter to be defined in a sensible way. Although not a part of this discussion, we point to two related studies on non-orthogonal patterns in the L2/3 model, namely Breitwieser (2011) and Rivkin (2014).

References

  • M. Abeles, G. Hayon, D. Lehmann, Modeling compositionality by dynamic binding of synfire chains. J. Comput. Neurosci. 17(2), 179–201 (2004)

    Article  Google Scholar 

  • A. Aertsen, M. Diesmann, M.O. Gewaltig, Propagation of synchronous spiking activity in feedforward neural networks. J. Physiol. Paris 90(3–4), 243–247 (1996). http://view.ncbi.nlm.nih.gov/pubmed/9116676. ISSN 0928-4257

    Google Scholar 

  • D.J. Amit, N. Brunel, Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7(3), 237–252 (1997)

    Article  Google Scholar 

  • O. Breitwieser, Investigation of a cortical attractor-memory network. Bachelor thesis, Ruprecht-Karls-Universität Heidelberg, 2011. HD-KIP 11-173

    Google Scholar 

  • O. Breitwieser, Towards a neuromorphic implementation of spike-based expectation maximization. Master thesis, Ruprecht-Karls-Universität Heidelberg, 2015

    Google Scholar 

  • R. Brette, W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Google Scholar 

  • V. Bringuier, F. Chavane, L. Glaeser, Y. Frégnac, Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283(5402), 695–699 (1999). doi:10.1126/science.283.5402.695. http://www.sciencemag.org/content/283/5402/695.abstract

    Google Scholar 

  • D. Brüderle, M.A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner, A. Grübl, K. Wendt, E. Müller, M.-O. Schwartz, D. de Oliveira, S. Jeltsch, J. Fieres, M. Schilling, P. Müller, O. Breitwieser, V. Petkov, L. Muller, A. Davison, P. Krishnamurthy, J. Kremkow, M. Lundqvist, E. Muller, J. Partzsch, S. Scholze, L. Zühl, C. Mayr, A. Destexhe, M. Diesmann, T. Potjans, A. Lansner, R. Schüffny, J. Schemmel, K. Meier, A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biol. Cybern. 104, 263–296 (2011). http://dx.doi.org/10.1007/s00422-011-0435-9. ISSN 0340-1200

    Google Scholar 

  • N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8(3), 183–208 (2000)

    Article  MATH  Google Scholar 

  • D. Buxhoeveden, M. Casanova, The minicolumn and evolution of the brain. Brain Behav. Evol. 60, 125–151 (2002)

    Article  Google Scholar 

  • B. Connors, M. Gutnick, Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990)

    Article  Google Scholar 

  • R. Cossart, D. Aronov, R. Yuste, Attractor dynamics of network up states in the neocortex. Nature 423, 238–283 (2003)

    Article  Google Scholar 

  • A. Destexhe, Self-sustained asynchronous irregular states and up/down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J. Comput. Neurosci. 3, 493–506 (2009)

    Article  MathSciNet  Google Scholar 

  • A. Destexhe, D. Contreras, Neuronal computations with stochastic network states. Science 314(5796), 85–90 (2006). doi:10.1126/science.1127241. http://www.sciencemag.org/content/314/5796/85.abstract

    Google Scholar 

  • A. Destexhe, D. Pare, Impact of network activity on the integrative properties of neocortical pyramidal neurons In vivo. J. Neurophysiol. 81(4), 1531–1547 (1999)

    Google Scholar 

  • A. Destexhe, M. Rudolph, D. Pare, The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003)

    Article  Google Scholar 

  • M. Diesmann, Conditions for Stable Propagation of Synchronous Spiking in Cortical Neural Networks: Single Neuron Dynamics and Network Properties. Ph.D. thesis, Ruhr-Universität Bochum, 2002

    Google Scholar 

  • M. Diesmann, M.-O. Gewaltig, NEST: an environment for neural systems simulations, in Forschung und wisschenschaftliches Rechnen, Beiträge zum Heinz-Billing-Preis 2001, vol. 58, GWDG-Bericht, ed. by T. Plesser, V. Macho (Ges. für Wiss. Datenverarbeitung, Göttingen, 2002), pp. 43–70

    Google Scholar 

  • M. Diesmann, M.-O. Gewaltig, A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529–533 (1999)

    Article  ADS  Google Scholar 

  • M. Diesmann, M.-O. Gewaltig, S. Rotter, A. Aertsen, State space analysis of synchronous spiking in cortical neural networks. Neurocomputing 38, 565–571 (2001)

    Article  Google Scholar 

  • S. El Boustani, A. Destexhe, A master equation formalism for macroscopic modeling of asynchronous irregular activity states. Neural Comput. 21(1), 46–100 (2009). http://dx.doi.org/10.1162/neco.2009.02-08-710

    Google Scholar 

  • S. Friedmann, N. Frémaux, J. Schemmel, W. Gerstner, K. Meier, Reward-based learning under hardware constraints - using a RISC processor in a neuromorphic system. Front. Neuromorphic Eng. (2013). http://arxiv.org/abs/1303.6708. Submitted

  • M. Giulioni, P. Camilleri, M. Mattia, V. Dante, J. Braun, P. Del Giudice, Robust hronously spiking neural network realized in neuromorphic VLSI. Front. Neurosci. 5(149) (2012). doi:10.3389/fnins.2011.00149. http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2011.00149/abstract. ISSN 1662-453X

  • G. González-Burgos, G. Barrionuevo, D.A. Lewis, Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb. Cortex 10(1), 82–92 (2000). doi:10.1093/cercor/10.1.82. http://cercor.oxfordjournals.org/content/10/1/82.abstract

    Google Scholar 

  • B. Hellwig, A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000). doi:10.1007/PL00007964. ISSN 0340-1200

    Google Scholar 

  • M. Hines, N. Carnevale, in The NEURON Simulation Environment, ed. by M.A. Arbib (MIT Press, Cambridge, 2003), pp. 769–773

    Google Scholar 

  • J. Hirsch, C. Gilbert, Synaptic physiology of horizontal connections in the cat’s visual cortex. J. Neurosci. 11(6), 1800–1809 (1991). http://www.jneurosci.org/content/11/6/1800.abstract

    Google Scholar 

  • B.M. Kampa, J.J. Letzkus, G.J. Stuart, Cortical feed-forward networks for binding different streams of sensory information. Nat. Neurosci. 9(12), 1472–1473 (2006)

    Article  Google Scholar 

  • J. Kremkow, A. Aertsen, A. Kumar, Gating of signal propagation in spiking neural networks by balanced and correlated excitation and inhibition. J. Neurosci. 30(47), 15760–15768 (2010). doi:10.1523/JNEUROSCI.3874-10.2010. ISSN 1529-2401

    Google Scholar 

  • J. Kremkow, L. Perrinet, G. Masson, A. Aertsen, Functional consequences of correlated excitatory and inhibitory conductances in cortical networks. J. Comput. Neurosci. 28, 579–594 (2010)

    Google Scholar 

  • A. Kumar, S. Schrader, A. Aertsen, S. Rotter, The high-conductance state of cortical networks. Neural Comput. 20(1), 1–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Lundqvist, M. Rehn, M. Djurfeldt, A. Lansner, Attractor dynamics in a modular network of neocortex. Netw.: Comput. Neural Syst. 17(3), 253–276 (2006)

    Article  Google Scholar 

  • M. Lundqvist, A. Compte, A. Lansner, Bistable, irregular firing and population oscillations in a modular attractor memory network. PLoS Comput. Biol. 6(6), 06 (2010)

    Article  MathSciNet  Google Scholar 

  • E. Marder, Variability, compensation, and modulation in neurons and circuits. Proc. Natl. Acad. Sci. 108(Supplement 3), 15542–15548 (2011)

    Article  ADS  Google Scholar 

  • E. Marder, J.-M. Goaillard, Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7(7), 563–574 (2006)

    Article  Google Scholar 

  • E. Marder, A.L. Taylor, Multiple models to capture the variability in biological neurons and networks. Nat. Neurosci. 14(2), 133–138 (2011)

    Article  Google Scholar 

  • H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, C. Wu, Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5(10), 793–807 (2004). doi:10.1038/nrn1519. ISSN 1471-003X

    Google Scholar 

  • V.B. Mountcastle, The columnar organization of the neocortex. Brain 120(4), 701–722 (1997)

    Article  Google Scholar 

  • P. Müller, Distortions of neural network models induced by their emulation on neuromorphic hardware devices. Diploma thesis, Ruprecht-Karls-Universität Heidelberg, 2011. HD-KIP-11-172

    Google Scholar 

  • L. Muller, A. Destexhe, Propagating waves in thalamus, cortex and the thalamocortical system: experiments and models. J. Physiol.-Paris 106(5–6), 222–238 (2012). doi:10.1016/j.jphysparis.2012.06.005. http://www.sciencedirect.com/science/article/pii/S0928425712000393. New trends in neurogeometrical approaches to the brain and mind problem. ISSN 0928-4257

    Google Scholar 

  • T. Murakoshi, J.-Z. Guo, T. Ichinose, Electrophysiological identification of horizontal synaptic connections in rat visual cortex in vitro. Neurosci. Lett. 163(2), 211–214 (1993). doi:10.1016/0304-3940(93)90385-X. http://www.sciencedirect.com/science/article/pii/030439409390385X. ISSN 0304-3940

    Google Scholar 

  • R. Perin, T.K. Berger, H. Markram, A synaptic organizing principle for cortical neuronal groups. PNAS 108, 5419–5424 (2011)

    Article  ADS  Google Scholar 

  • A. Peters, C. Sethares, The organization of double bouquet cells in monkey striate cortex. J. Neurocytol. 26(12), 779–797 (1997). doi:10.1023/A:1018518515982

    Article  Google Scholar 

  • M.A. Petrovici, B. Vogginger, P. Müller, O. Breitwieser, M. Lundqvist, L. Muller, M. Ehrlich, A. Destexhe, A. Lansner, R. Schüffny et al., Characterization and compensation of network-level anomalies in mixed-signal neuromorphic modeling platforms. PloS one 9(10), e108590 (2014)

    Article  ADS  Google Scholar 

  • T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M.A. Petrovici, M. Schmuker, D. Brüderle, J. Schemmel, K. Meier, Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 7, 11 (2013). doi:10.3389/fnins.2013.00011. http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract. ISSN 1662-453X

  • F. Rieke, D. Warland, R. de Ruyter van Steveninck, W. Bialek, Spikes - Exploring the Neural Code (MIT Press, Cambridge, 1997)

    Google Scholar 

  • B. Rivkin, On the memory characteristic of a cortical atractor network. Bachelor thesis, Ruprecht-Karls-Universität Heidelberg, 2014

    Google Scholar 

  • A. Roxin, N. Brunel, D. Hansel, Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys. Rev. Lett. 94, 238103 (2005). doi:10.1103/PhysRevLett.94.238103. http://link.aps.org/doi/10.1103/PhysRevLett.94.238103

  • J. Schemmel, D. Brüderle, K. Meier, B. Ostendorf, Modeling synaptic plasticity within networks of highly accelerated I&F neurons, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), IEEE Press (2007), pp. 3367–3370

    Google Scholar 

  • J. Schemmel, J. Fieres, K. Meier, Wafer-scale integration of analog neural networks, in Proceedings of the International Joint Conference on Neural Networks (IJCNN) (2008)

    Google Scholar 

  • S. Schrader, M. Diesmann, A. Morrison, A compositionality machine realized by a hierarchic architecture of synfire chains. Front. Comput. Neurosci. 4, 154 (2010)

    Google Scholar 

  • S. Song, P.J. Sjöström, M. Reigl, S. Nelson, D.B. Chklovskii, Highly nonrandom features of synaptic connectivity in cortical circuits. PLOS Biol. 3(3), 517–519 (2005)

    Article  Google Scholar 

  • A.E. Telfeian, B.W. Connors, Widely integrative properties of layer 5 pyramidal cells support a role for processing of extralaminar synaptic inputs in rat neocortex. Neurosci. Lett. 343(2), 121–124 (2003). doi:10.1016/S0304-3940(03)00379-3. http://www.sciencedirect.com/science/article/pii/S0304394003003793. ISSN 0304-3940

    Google Scholar 

  • A.M. Thomson, D.C. West, Y. Wang, A.P. Bannister, Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12, 936–953 (2002)

    Article  Google Scholar 

  • T.P. Vogels, L.F. Abbott, Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 25(46), 10786–10795 (2005)

    Article  Google Scholar 

  • B. Vogginger, Testing the operation workflow of a neuromorphic hardware system with a functionally accurate model. Diploma thesis, Ruprecht-Karls-Universität Heidelberg, 2010. HD-KIP-10-12

    Google Scholar 

  • C. Weilbach, An online learning algorithm for lif-based Boltzmann machines. Bachelor thesis, Ruprecht-Karls-Universität Heidelberg, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Alexandru Petrovici .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petrovici, M.A. (2016). Cortical Models on Neuromorphic Hardware. In: Form Versus Function: Theory and Models for Neuronal Substrates . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39552-4_5

Download citation

Publish with us

Policies and ethics