Skip to main content

Artificial Brains: Simulation and Emulation of Neural Networks

  • Chapter
  • First Online:
Form Versus Function: Theory and Models for Neuronal Substrates

Part of the book series: Springer Theses ((Springer Theses))

  • 872 Accesses

Abstract

When describing increasingly complex systems, the required array of equations equivalently grows in size and complexity. In many (usually simple) cases, statistical methods can be applied to distill macroscopic equations from those governing the microscopic components of a system, with thermodynamics offering a paradigmatic example.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, complexity can be understood both as number of constituent components, as well as concerning the nature of the equations describing their dynamics and interactions.

  2. 2.

    Strictly speaking, \({E_\mathrm {l}} \) is of course not a reversal potential in the same sense as \({E^\mathrm {rev}_\mathrm {e}} \) and \({E^\mathrm {rev}_\mathrm {i}} \) (see Sect. 2.1.1). However, from a purely mathematical perspective, these three parameters have equivalent contributions to the LIF Eq. 2.54.

References

  • J. Bill, K. Schuch, D. Brüderle, J. Schemmel, W. Maass, K. Meier, Compensating inhomogeneities of neuromorphic VLSI devices via short-term synaptic plasticity. Front. Comp. Neurosci. 4(129) (2010)

    Google Scholar 

  • R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr., M. Zirpe, T. Natschlager, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel, T. Vieville, E. Muller, A.P. Davison, S.E. Boustani, A. Destexhe, Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  • D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel, K. Meier, Establishing a novel modeling tool: A python-based interface for a neuromorphic hardware system. Front. Neuroinform. 3(17) (2009)

    Google Scholar 

  • D. Brüderle, M.A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner, A. Grübl, K. Wendt, E. Müller, M.-O. Schwartz, D. de Oliveira, S. Jeltsch, J. Fieres, M. Schilling, P. Müller, O. Breitwieser, V. Petkov, L. Muller, A. Davison, P. Krishnamurthy, J. Kremkow, M. Lundqvist, E. Muller, J. Partzsch, S. Scholze, L. Zühl, C. Mayr, A. Destexhe, M. Diesmann, T. Potjans, A. Lansner, R. Schüffny, J. Schemmel, K. Meier, A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems. Biol. Cybern. 104, 263–296 (2011). http://dx.doi.org/10.1007/s00422-011-0435-9. ISSN 0340-1200

    Google Scholar 

  • A.P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, P. Yger, PyNN: a common interface for neuronal network simulators. Front. Neuroinform. 2(11) (2008)

    Google Scholar 

  • M. Diesmann, M.-O. Gewaltig, NEST: An environment for neural systems simulations, in Forschung und wisschenschaftliches Rechnen, Beiträge zum Heinz-Billing-Preis 2001, volume 58 of GWDG-Bericht, ed. by T. Plesser, V. Macho (Ges. für Wiss. Datenverarbeitung, Göttingen, 2002), pp. 43–70

    Google Scholar 

  • M. Ehrlich, C. Mayr, H. Eisenreich, S. Henker, A. Srowig, A. Grübl, J. Schemmel, R. Schüffny, Wafer-scale VLSI implementations of pulse coupled neural networks, in Proceedings of the International Conference on Sensors, Circuits and Instrumentation Systems (SSD-07) (2007)

    Google Scholar 

  • M. Ehrlich, K. Wendt, L. Zühl, R. Schüffny, D. Brüderle, E. Müller, B. Vogginger, A software framework for mapping neural networks to a wafer-scale neuromorphic hardware system. Proc. Artif. Neural Netw. Intell. Inf. Process. Conf. (ANNIIP) 2010, 43–52 (2010)

    Google Scholar 

  • J. Fieres, J. Schemmel, K. Meier, Realizing biological spiking network models in a configurable wafer-scale hardware system, in Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN) (2008)

    Google Scholar 

  • S.B. Furber, D.R. Lester, L.A. Plana, J.D. Garside, E. Painkras, S. Temple, A.D. Brown, Overview of the SpiNNaker system architecture. IEEE Transactions on Computers, 99 (PrePrints, 2012) http://doi.ieeecomputersociety.org/10.1109/TC.2012.142. ISSN 0018-9340

  • M.-O. Gewaltig, M. Diesmann, NEST (NEural Simulation Tool). Scholarpedia 2(4), 1430 (2007)

    Article  ADS  Google Scholar 

  • S. Hartmann, S. Schiefer, S. Scholze, J. Partzsch, C. Mayr, S. Henker, R. Schuffny. Highly integrated packet-based aer communication infrastructure with 3gevent/s throughput, in 2010 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS) pp. 950–953, (2010). doi:10.1109/ICECS.2010.5724670

  • M. Hines, N. Carnevale, The NEURON simulation environment, pp. 769–773. M.A. Arbib (2003)

    Google Scholar 

  • M.L. Hines, N.T. Carnevale, The NEURON Book (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  • M. Hines, J. W. Moore, T. Carnevale, Neuron (2008). http://neuron.duke.edu

  • G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006)

    Google Scholar 

  • G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Neuromorphic silicon neuron circuits. Front. Neurosci. 5(0) (2011). doi:10.3389/fnins.2011.00073. http://www.frontiersin.org/Journal/Abstract.aspx?s=755&name=neuromorphic engineering&ART_DOI=10.3389/fnins.2011.00073. ISSN 1662-453X

  • S. Jeltsch, Computing with transient states on a neuromorphic multi-chip environment. Diploma thesis, Ruprecht-Karls-Universität Heidelberg, 2010. HD-KIP-10-54

    Google Scholar 

  • B. Kaplan, D. Brüderle, J. Schemmel, K. Meier, High-conductance states on a neuromorphic hardware system, in Proceedings of the 2009 International Joint Conference on Neural Networks (IJCNN) (2009)

    Google Scholar 

  • T. Lande, H. Ranjbar, M. Ismail, Y. Berg, An analog floating-gate memory in a standard digital technology, in 1996 Proceedings of Fifth International Conference on Microelectronics for Neural Networks, pp. 271 –276, 12–14 (1996). doi:10.1109/MNNFS.1996.493802

    Google Scholar 

  • H. Markram, A. Gupta, A. Uziel, Y. Wang, M. Tsodyks, Information processing with frequency-dependent synaptic connections. Neurobiol. Learn. Mem. 70(1–2), 101–112 (1998a)

    Article  Google Scholar 

  • H. Markram, The blue brain project. Nat. Rev. Neurosci. 7(2), 153–160 (2006)

    Article  MathSciNet  Google Scholar 

  • H. Markram, The human brain project. Sci. Am. 306(6), 50–55 (2012)

    Article  Google Scholar 

  • C.A. Mead, M.A. Mahowald, A silicon model of early visual processing. Neural Netw. 1(1), 91–97 (1988)

    Article  Google Scholar 

  • C.A. Mead, Analog VLSI and Neural Systems (Addison Wesley, MA, 1989)

    Book  MATH  Google Scholar 

  • C.A. Mead, Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990)

    Article  Google Scholar 

  • S. Millner, A. Grübl, K. Meier, J. Schemmel, M.-O. Schwartz, A VLSI implementation of the adaptive exponential integrate-and-fire neuron model, in J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta, (eds.), Advances in Neural Information Processing Systems 23, pages 1642–1650, 2010

    Google Scholar 

  • A. Morrison, M. Diesmann, W. Gerstner, Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98(6), 459–478 (2008). doi:10.1007/s00422-008-0233-1. ISSN 0340-1200

    Google Scholar 

  • M.A. Petrovici, B. Vogginger, P. Müller, O. Breitwieser, M. Lundqvist, L. Muller, M. Ehrlich, A. Destexhe, A. Lansner, R. Schüffny et al., Characterization and compensation of network-level anomalies in mixed-signal neuromorphic modeling platforms. PloS One 9(10), e108590 (2014)

    Article  ADS  Google Scholar 

  • T. Pfeil, T.C. Potjans, S. Schrader, W. Potjans, J. Schemmel, M. Diesmann, K. Meier, Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware. Front. Neurosci. 6(90), 1 (2012). doi:10.3389/fnins.2012.00090. ISSN 1662-453X

  • T. Pfeil, T.C. Potjans, S. Schrader, W. Potjans, J. Schemmel, M. Diesmann, K. Meier, Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware. Front. Neurosci. 6(90) (2012b). doi:10.3389/fnins.2012.00090. ISSN 1662-453X

  • T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M.A. Petrovici, M. Schmuker, D. Brüderle, J. Schemmel, K. Meier, Six networks on a universal neuromorphic computing substrate. Front. Neurosci. 7, 11 (2013). doi:10.3389/fnins.2013.00011. http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract. ISSN 1662-453X

  • P. Rocke, B. McGinley, J. Maher, F. Morgan, J. Harkin, Lecture Notes in Computer Science, in Evolvable Systems: From Biology to Hardware, vol. 5216, Investigating the Suitability of Paas for Evolved Hardware Spiking Neural Networks, ed. by G. Hornby, L. Sekanina, P. Haddow (Springer, Heidelberg, 2008), pp. 118–129. doi:10.1007/978-3-540-85857-7_11. ISBN 978-3-540-85856-0

  • J. Schemmel, A. Grübl, K. Meier, E. Muller. Implementing synaptic plasticity in a VLSI spiking neural network model, in Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN). IEEE Press (2006)

    Google Scholar 

  • J. Schemmel, D. Brüderle, K. Meier, B. Ostendorf, Modeling synaptic plasticity within networks of highly accelerated I&F neurons, in Proceedings of the 2007 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3367–3370. IEEE Press (2007)

    Google Scholar 

  • J. Schemmel, J. Fieres, K. Meier, Wafer-scale integration of analog neural networks, in Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN) (2008)

    Google Scholar 

  • J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, S. Millner, A Wafer-scale Neuromorphic Hardware System for Large-scale Neural Modeling, in Proceedings of the 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1947–1950 (2010)

    Google Scholar 

  • S. Scholze, S. Henker, J. Partzsch, C. Mayr, R. Schuffny, Optimized queue based communication in VLSI using a weakly ordered binary heap, in 2010 Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), pp. 316 –320 (2010)

    Google Scholar 

  • S. Scholze, H. Eisenreich, S. Höppner, G. Ellguth, S. Henker, M. Ander, S. Hänzsche, J. Partzsch, C. Mayr, R. Schüffny, A 32 GBit/s communication SoC for a waferscale neuromorphic system. Integr. VLSI J. (2011a) doi:10.1016/j.vlsi.2011.05.003. in press

    Google Scholar 

  • S. Scholze, S. Schiefer, J. Partzsch, S. Hartmann, C.G. Mayr, S. Höppner, H. Eisenreich, S. Henker, B. Vogginger, R. Schüffny, VLSI implementation of a 2.8GEvent/s packet based AER interface with routing and event sorting functionality. Frontiers in Neuromorphic. Engineering 5(117), 1–13 (2011b)

    Google Scholar 

  • M. Tsodyks , H. Markram, The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability, in Proceedings of the national academy of science USA, pp. 719–723 (1997)

    Google Scholar 

  • R.J. Vogelstein, U. Mallik, J.T. Vogelstein, G. Cauwenberghs, Dynamically reconfigurable silicon array of spiking neuron with conductance-based synapses. IEEE Trans. Neural Netw. 18, 253–265 (2007)

    Article  Google Scholar 

  • T. Website (2009) http://www.nest-initiative.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Alexandru Petrovici .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petrovici, M.A. (2016). Artificial Brains: Simulation and Emulation of Neural Networks. In: Form Versus Function: Theory and Models for Neuronal Substrates . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39552-4_3

Download citation

Publish with us

Policies and ethics