Skip to main content

Electroacoustic Transduction

  • Chapter
  • First Online:
Transducers and Arrays for Underwater Sound

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 2325 Accesses

Abstract

This chapter will describe the six major electroacoustic transduction mechanisms in a unified way using one-dimensional models to derive pairs of linear equations specific to each mechanism as discussed in general in Sect. 1.3. Important characteristics of the transducer types will be summarized and compared to show why piezoelectric and magnetostrictive transducers are best suited for most applications in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.G. Cady, Piezoelectricity, vol 1. (Dover Publications, New York, 1964), p. 177. See also, Piezoelectricity, ed. by C.Z. Rosen, B.V. Hiremath, R. Newnham (American Institute of Physics, New York, 1992)

    Google Scholar 

  2. D.A. Berlincourt, D.R. Curran, H. Jaffe, Piezoelectric and Piezomagnetic Materials and Their Function in Transducers, in Physical Acoustics, ed. by W.P. Mason, vol. 1 (Academic, New York, 1964)

    Google Scholar 

  3. R.E. Newnham, Properties of Materials (Oxford University Press, Oxford, 2005)

    Google Scholar 

  4. E.J. Parssinen (verbal communication), The possibility of depoling under pressure cycling was the reason for choosing the 31 mode over the 33 mode in the first use of PZT for submarine transducers of NUWC, Newport, RI

    Google Scholar 

  5. E.J. Parssinen, S. Baron, J.F. White, Double Mass Loaded High Power Piezoelectric Underwater Transducer. Patent 4,219.889, 26 Aug 1980

    Google Scholar 

  6. R.S. Woollett, Effective coupling factor of single-degree-of-freedom transducers. J. Acoust. Soc. Am. 40, 1112–1123 (1966)

    Article  ADS  Google Scholar 

  7. W.Y. Pan, W.Y. Gu, D.J. Taylor, L.E. Cross, Large piezoelectric effect induced by direct current bias in PMN-PT relaxor ferroelectric ceramics. Jpn. J. Appl. Phys. 28, 653 (1989)

    Article  ADS  Google Scholar 

  8. M.B. Moffett, M.D. Jevenager, S.S. Gilardi, J.M. Powers, Biased lead zirconate titanate as a high-power transduction material. J. Acoust. Soc. Am. 105, 2248–2251 (1999)

    Article  ADS  Google Scholar 

  9. S. Trolier-McKinstry, L. Eric Cross, Y. Yamashita (eds.), Piezoelectric Single Crystals and Their Application. (Pennsylvania State University and Toshiba Corp., Pennsylvania State University Press 2004).

    Google Scholar 

  10. V.E. Ljamov, Nonlinear acoustical parameters in piezoelectric crystals. J. Acoust. Soc. Am. 52, 199–202 (1972)

    Article  ADS  Google Scholar 

  11. W.P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, New York, 1950)

    Google Scholar 

  12. J.C. Piquette, S.E. Forsythe, A nonlinear material model of lead magnesium niobate (PMN). J. Acoust. Soc. Am. 101, 289–296 (1997)

    Article  ADS  Google Scholar 

  13. J.C. Piquette, S.E. Forsythe, Generalized material model for lead magnesium niobate (PMN) and an associated electromechanical equivalent circuit. J. Acoust. Soc. Am. 104, 2763–2772 (1998)

    Article  ADS  Google Scholar 

  14. J.C. Piquette, Quasistatic coupling coefficients for electrostrictive ceramics. J. Acoust. Soc. Am. 110, 197–207 (2001)

    Article  ADS  Google Scholar 

  15. C.L. Hom, S.M. Pilgrim, N. Shankar, K. Bridger, M. Massuda, R. Winzer, Calculation of quasi-static electromechanical coupling coefficients for electrostrictive ceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 542 (1994)

    Article  Google Scholar 

  16. H.C. Robinson, A comparison of nonlinear models for electrostrictive materials. Presentation to 1999 I.E. Ultrasonics Symposium, Oct 1999, Lake Tahoe, Nevada

    Google Scholar 

  17. J.C. Piquette, R.C. Smith, Analysis and comparison of four anhysteretic polarization models for lead magnesium niobate. J. Acoust. Soc. Am. 108, 1651–1662 (2000)

    Article  ADS  Google Scholar 

  18. F.M. Guillot, J. Jarzynski, E. Balizer, Measurement of electrostrictive coefficients of polymer films. J. Acoust. Soc. Am. 110, 2980–2990 (2001)

    Article  ADS  Google Scholar 

  19. NDRC, Design and Construction of Magnetostriction Transducers. Div 6 Summary Technical Reports, vol 13 (1946)

    Google Scholar 

  20. R.J. Bulmer, L. Camp, E.J. Parssinen, Low Frequency Cylindrical Magnetostrictive Transducer for Use as a Projector at Deep Submergence. Proceedings of 22nd Navy Symposium on Underwater Acoustics, October 1964. See also T.J. Meyersm, E.J. Parssinen, Broadband Free Flooding Magnetostrictive Scroll Transducer, Patent No. 4,223,401, 16 Sept 1980

    Google Scholar 

  21. C.M. van der Burgt, Phillips Res. Rep. 8, 91 (1953)

    Google Scholar 

  22. M.A. Mitchell, A.E. Clark, H.T. Savage, R.J. Abbundi, Delta E effect and magnetomechanical coupling factor in Fe80B20 and Fe78Si10B12 glassy ribbons. IEEE Trans. Mag 14, 1169–1171 (1978)

    Article  ADS  Google Scholar 

  23. A.E. Clark, Magnetostrictive rare earth-Fe2 compounds. Ferromag. Mater. 1, 531–589 (North Holland Publishing, 1980). See also, A.E. Clark, H.S. Belson, Giant room temperature magnetostriction in TbFe2 and DyFe2. Phys. Rev. B 5, 3642 (1972)

    Google Scholar 

  24. A.E. Clark, J.B. Restorff, M. Wun-Fogle, T.A. Lograsso, D.L. Schlagel, Magnetostrictive properties of b.c.c. Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Mag. 36, 3238 (2000). See also, A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, V.M. Keppens, G. Petculescu, R.A. Taylor, Extraordinary magnetoelasticity and lattice softening in b.c.c. Fe-Ga alloys. J. Appl. Phys. 93, 8621 (2003)

    Google Scholar 

  25. S.L. Ehrlich, Proposal of piezomagnetic nomenclature for magnetostrictive materials. Proc. Inst. Radio Eng. 40, 992 (1952)

    Google Scholar 

  26. R.S. Woollett, Sonar Transducer Fundamentals. (Naval Undersea Warfare Center Report, Newport Rhode Island, Undated)

    Google Scholar 

  27. F.V. Hunt, Electroacoustics (Wiley, New York, 1954)

    Book  Google Scholar 

  28. A. Caronti, R. Carotenuto, M. Pappalardo, Electromechanical coupling factor of capacitive micromachined ultrasonic transducers. J. Acoust. Soc. Am. 113, 279–288 (2003)

    Article  ADS  Google Scholar 

  29. R.J. Bobber, Underwater Electroacoustic Measurements (US Government Printing Office, Washington, DC, 1970)

    Google Scholar 

  30. J.F. Hersh, Coupling Coefficients. Harvard University Acoustics Research Laboratory, Technical Memorandum No. 40, 15 Nov 1957

    Google Scholar 

  31. C.H. Sherman, Underwater sound transducers—a review. IEEE Trans. Sonics Ultrason. Su-22, 281–290 (1975)

    Article  Google Scholar 

  32. D. Stansfield, Underwater Electroacoustic Transducers (Bath University Press, Bath, UK, 1991)

    Google Scholar 

  33. R.S. Woollett, Power limitations of sonic transducers. IEEE Trans. Sonics Ultrason. SU-15, 218–229 (1968)

    Article  Google Scholar 

  34. J.F. Lindberg, The application of high energy density transducer material to smart systems, Mat. Res. Soc. Symp. Proc. vol 459 (Materials Research Society, 1997). See also D.F. Jones, J.F. Lindberg, Recent transduction developments in Canada and the United States. Proc. Inst. Acous. 17(Part 3), 15 (1995)

    Google Scholar 

  35. J. Hughes, High power, high duty cycle broadband transducers; R. Meyer High power transducer characterization. ONR 321 Maritime Sensing (MS) Program Review, 18 August, 2005, NUWC, Newport, RI

    Google Scholar 

  36. S.C. Butler, J.B. Blottman III, R.E. Montgomery, A thermal analysis of high drive ring transducer elements. NUWC-NPT Technical Report 11,467, 15 June 2005, see also R. Montgomery, S.C. Butler, Thermal analysis of high drive transducer elements (A). J. Acoust. Soc. Am. 105, 1121 (1999)

    Google Scholar 

  37. J.L. Butler, A.L. Butler, S.C. Butler, Thermal model for piezoelectric transducers. J. Acoust. Soc. Am. 132, 2161–2163 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butler, J.L., Sherman, C.H. (2016). Electroacoustic Transduction. In: Transducers and Arrays for Underwater Sound. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-39044-4_2

Download citation

Publish with us

Policies and ethics