Skip to main content

Mathematical Models for Acoustic Radiation

  • Chapter
  • First Online:
Transducers and Arrays for Underwater Sound

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 2299 Accesses

Abstract

This chapter will extend the results in Chap. 10 by using more advanced analytical methods for calculating acoustical quantities such as mutual radiation impedance. Before fast computers were available some of the results obtained by analytical methods had limited usefulness when they were expressed as slowly converging infinite series or integrals that required numerical evaluation. Now such series and integrals can be evaluated more easily. In some cases the analytical methods give more physical insight, or can be reduced to a simpler form, than the strictly numerical methods. Results for several useful cases obtained by analytical methods, and numerically evaluated, will be given in this chapter. However, the most advanced analytical methods cannot handle the geometries presented by practical transducers and arrays; in these cases finite element numerical methods are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.M. Morse, Vibration and Sound (McGraw-Hill, New York, 1948)

    Google Scholar 

  2. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics, 4th edn. (Wiley, New York, 2000)

    Google Scholar 

  3. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  4. P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968)

    Google Scholar 

  5. M.C. Junger, D. Feit, Sound, Structures and Their Interaction, 2nd edn. (The MIT Press, Cambridge, 1986)

    MATH  Google Scholar 

  6. L.L. Beranek, T.J. Mellow, Acoustics: Sound Fields and Transducers (Academic, Oxford, 2012)

    Google Scholar 

  7. T.W. Wu (ed.), Boundary Element Acoustics (WIT Press, Southampton, 2000)

    Google Scholar 

  8. C.A. Brebbia, J. Dominguez, Boundary Elements: An Introductory Course (Computational Mechanics Publications, Southampton and McGraw-Hill, New York, 1989)

    MATH  Google Scholar 

  9. G.W. Benthein, S.L. Hobbs, Modeling of Sonar Transducers and Arrays, Technical Document 3181, April 2004 (SPAWAR Systems Center, San Diego, CA) (Available on CD)

    Google Scholar 

  10. M.C. Junger, Surface pressures generated by pistons on large spherical and cylindrical baffles. J. Acoust. Soc. Am. 41, 1336–1346 (1967)

    Article  ADS  Google Scholar 

  11. C.H. Sherman, Mutual radiation impedance of sources on a sphere. J. Acoust. Soc. Am. 31, 947–952 (1959)

    Article  ADS  Google Scholar 

  12. A. Silbiger, Radiation from circular pistons of elliptical profile. J. Acoust. Soc. Am. 33, 1515–1522 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Nimura, Y. Watanabe, Vibrating circular disk with a finite baffle board. Jour. IEEE Japan 68, 263 (1948) (in Japanese). Results available in Ultrasonic Transducers, ed. by Y. Kikuchi (Corona Pub. Co., Tokyo, 1969), p. 348

    Google Scholar 

  14. J.E. Boisvert, A.L. Van Buren, Acoustic radiation impedance of rectangular pistons on prolate spheroids. J. Acoust. Soc. Am. 111, 867–874 (2002)

    Article  ADS  Google Scholar 

  15. J.E. Boisvert, A.L. Van Buren, Acoustic directivity of rectangular pistons on prolate spheroids. J. Acoust. Soc. Am. 116, 1932–1937 (2004)

    Article  ADS  Google Scholar 

  16. N.W. McLachlan, Theory and Application of Mathieu Functions (Dover, New York, 1964)

    MATH  Google Scholar 

  17. J.E. Boisvert, A.L. Van Buren, Acoustic radiation impedance and directional response of rectangular pistons on elliptic cylinders. J. Acoust. Soc. Am. 118, 104–112 (2005)

    Article  ADS  Google Scholar 

  18. V.H. Weston, Q. Appl. Math. 15, 420–425 (1957)

    MathSciNet  Google Scholar 

  19. V.H. Weston, Q. Appl. Math. 16, 237–257 (1958)

    MathSciNet  Google Scholar 

  20. V.H. Weston, J. Math. Phys. 39, 64–71 (1960)

    Google Scholar 

  21. C.H. Sherman, N.G. Parke, Acoustic radiation from a thin torus, with application to the free-flooding ring transducer. J. Acoust. Soc. Am. 38, 715–722 (1965)

    Article  ADS  Google Scholar 

  22. D.T. Laird, H. Cohen, Directionality patterns for acoustic radiation from a source on a rigid cylinder. J. Acoust. Soc. Am. 24, 46–49 (1952)

    Article  ADS  Google Scholar 

  23. J.E. Greenspon, C.H. Sherman, Mutual radiation impedance and nearfield pressure for pistons on a cylinder. J. Acoust. Soc. Am. 36, 149–153 (1964)

    Article  ADS  Google Scholar 

  24. D.H. Robey, On the radiation impedance of an array of finite cylinders. J. Acoust. Soc. Am. 27, 706–710 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.L. Butler, A.L. Butler, A Fourier series solution for the radiation impedance of a finite cylinder. J. Acoust. Soc. Am. 104, 2773–2778 (1998)

    Article  ADS  Google Scholar 

  26. J.L. Butler, Self and Mutual Impedance for a Square Piston in a Rigid Baffle, Image Acoustics Rept. on Contract N66604-92-M-BW19, March 20, 1992

    Google Scholar 

  27. C.J. Tranter, Integral Transforms in Mathematical Physics, 3rd edn. (Wiley, New York, 1966), pp. 47–48

    MATH  Google Scholar 

  28. C.J. Tranter, Integral Transforms in Mathematical Physics, 3rd edn. (Wiley, New York, 1966), p.48, Eq. (4.15)

    Google Scholar 

  29. V. Mangulis, Kramers-Kronig or dispersion relations in acoustics. J. Acoust. Soc. Am. 36, 211–212 (1964)

    Article  ADS  Google Scholar 

  30. C.J. Bouwkamp, A contribution to the theory of acoustic radiation. Phillips Res. Rep. 1, 251–277 (1946)

    MathSciNet  Google Scholar 

  31. R.L. Pritchard, Mutual acoustic impedance between radiators in an infinite rigid plane. J. Acoust. Soc. Am. 32, 730–737 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.T. Porter, Self and mutual radiation impedance and beam patterns for flexural disks in a rigid plane. J. Acoust. Soc. Am. 36, 1154–1161 (1964)

    Article  ADS  Google Scholar 

  33. W. Thompson Jr., The computation of self and mutual radiation impedances for annular and elliptical pistons using Bouwkamp’s integral. J. Sound Vib. 17, 221–233 (1971)

    Article  ADS  Google Scholar 

  34. G. Brigham, B. McTaggart, Low frequency acoustic modeling of small monopole transducers, in UDT 1990 Conference Proceedings (Microwave Exhibitions and Publishers, Tunbridge Wells), pp. 747–755

    Google Scholar 

  35. L. Challis, F. Sheard, The green of Green’s functions. Phys Today 56, 41–46 (2003)

    Article  ADS  Google Scholar 

  36. B.B. Baker, E.T. Copson, The Mathematical Theory of Huygens’ Principle, 3rd edn. (AMS Chelsea, Providence, 1987)

    MATH  Google Scholar 

  37. T. Mellow, L. Karkkainen, On the sound field of an oscillating disk in a finite open and closed circular baffle. J. Acoust. Soc. Am. 118, 1311–1325 (2005)

    Article  ADS  Google Scholar 

  38. A.L. Butler, J.L. Butler, Near-field and far-field measurements of a ribbon tweeter/midrange. J. Acoust. Soc. Am. 98(5), 2872 (1995) (A)

    Google Scholar 

  39. S.N. Reschevkin, A Course of Lectures on the Theory of Sound (Pergamon, Oxford, 1963). Chapter 11

    Google Scholar 

  40. E.M. Arase, Mutual radiation impedance of square and rectangular pistons in a rigid infinite baffle. J. Acoust. Soc. Am. 36, 1521–1525 (1964)

    Article  ADS  Google Scholar 

  41. C.H. Sherman, Special relationships between the farfield and the radiation impedance of cylinders. J. Acoust. Soc. Am. 43, 1453–1454 (1968)

    Article  ADS  Google Scholar 

  42. V. Mangulis, Relation between the radiation impedance, pressure in the far field and baffle impedance. J. Acoust. Soc. Am. 36, 212–213 (1964)

    Article  ADS  Google Scholar 

  43. D.D. Baker, Determination of far-field characteristics of large underwater sound transducers from near-field measurements. J. Acoust. Soc. Am. 34, 1737–1744 (1962)

    Article  ADS  Google Scholar 

  44. W. Thompson Jr., Radiation from a spherical acoustic source near a scattering sphere. J. Acoust. Soc. Am. 60, 781–787 (1976)

    Article  ADS  Google Scholar 

  45. W. Thompson Jr., Acoustic coupling between two finite-sized spherical sources. J. Acoust. Soc. Am. 62, 8–11 (1977)

    Article  ADS  Google Scholar 

  46. T.A. Henriquez, Diffraction constants of acoustic transducers. J. Acoust. Soc. Am. 36, 267–269 (1964)

    Article  ADS  Google Scholar 

  47. J.L. Butler, D.T. Porter, A Fourier transform solution for the acoustic radiation from a source near an elastic cylinder. J. Acoust. Soc. Am. 89, 2774–2785 (1991)

    Article  ADS  Google Scholar 

  48. W. Magnus, F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical Physics (Chelsea, New York, 1962), pp. 139–143

    Google Scholar 

  49. H. Stenzel, Leitfaden zur Berechnung von Schallvorgangen (Springer, Berlin, 1939), pp. 75–79

    Book  Google Scholar 

  50. M.C. Junger, Sound radiation from a radially pulsating cylinder of finite length. Harvard Univ. Acoust. Res. Lab. (24 June 1955)

    Google Scholar 

  51. M.C. Junger, A Variational Solution of Solid and Free-Flooding Cylindrical Sound Radiators of Finite Length, Cambridge Acoustical Associates Tech. Rept. U-177-48, Contract Nonr-2739(00) (1 March 1964)

    Google Scholar 

  52. W. Williams, N.G. Parke, D.A. Moran, C.H. Sherman, Acoustic radiation from a finite cylinder. J. Acoust. Soc. Am. 36, 2316–2322 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  53. B.L. Sandman, Fluid loading influence coefficients for a finite cylindrical shell. J. Acoust. Soc. Am. 60, 1256–1264 (1976)

    Article  ADS  MATH  Google Scholar 

  54. J.L. Butler, Solution of acoustical-radiation problems by boundary collocation. J. Acoust. Soc. Am. 48, 325–336 (1970)

    Article  ADS  MATH  Google Scholar 

  55. C.C. Gerling, W. Thompson Jr., Axisymmetric spherical radiator with mixed boundary conditions. J. Acoust. Soc. Am. 61, 313–317 (1977)

    Article  ADS  Google Scholar 

  56. V. Mangulis, On the radiation of sound from a piston in a nonrigid baffle. J. Acoust. Soc. Am. 35, 115–116 (1963)

    Article  ADS  Google Scholar 

  57. L.H. Chen, D.G. Schweikert, Sound radiation from an arbitrary body. J. Acoust. Soc. Am. 35, 1626–1632 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  58. G. Chertock, Sound radiation from vibrating surfaces. J. Acoust. Soc. Am. 36, 1305–1313 (1964)

    Article  ADS  Google Scholar 

  59. L.G. Copley, Integral equation method for radiation from vibrating bodies. J. Acoust. Soc. Am. 41, 807–816 (1967)

    Article  ADS  Google Scholar 

  60. H.A. Schenck, Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am. 44, 41–58 (1968)

    Article  ADS  Google Scholar 

  61. J.L. Butler, R.T. Richards, Micro-CHIEF, An interactive desktop computer program for acoustic radiation from transducers and arrays, in UDT conference Proceedings (London, 7–9 February 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Butler, J.L., Sherman, C.H. (2016). Mathematical Models for Acoustic Radiation. In: Transducers and Arrays for Underwater Sound. Modern Acoustics and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-39044-4_11

Download citation

Publish with us

Policies and ethics