Skip to main content

Black Box Quantum Mechanics

  • Chapter
  • First Online:
Quantum [Un]Speakables II

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 2271 Accesses

Abstract

There is no doubt that Bell’s theorem [1] is a fundamental result for our understanding of quantum physics and its relation with classical physics. Before Bell, the possibility that an intuitive classical model could exist with the same predictive power as quantum physics was valid and, in a sense, justified in view of the arguments by Einstein, Podosky and Rosen (EPR) on the incompleteness of quantum physics [2]. After Bell’s work, a classical model for quantum physics is still possible but, as discussed below, requires breaking some very natural assumptions that, in a way, make it as counter-intuitive as quantum physics. In the last decade, our understanding of Bell’s theorem, for instance of the assumptions required for its derivation and its implications, has significantly improved using concepts and ideas borrowed from quantum information theory. At the same time, concepts from foundations of quantum physics have opened new approaches to quantum information applications, especially in the so-called device-independent scenario. The purpose of this text is to provide an overview over this new research direction merging quantum foundations and information theory, with an emphasis on the motivations and some of the obtained results. Our text, however, should not be understood as a review paper, but more as a rather personal selection of results in the field, unavoidably biased to some of our works. The structure of the essay is as follows: we start by presenting the assumptions required in the derivation of Bell’s theorem and its implications. We move on and show how ideas from Bell’s arguments can be used for quantum information purposes: we introduce the device-independent approach to quantum information theory and argue that it can be interpreted as a form of Bell-type quantum information theory. Then, we reverse this direction and show how ideas from information theory help us to understand quantum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, in a realistic experiment, there are 4 possible results: no detector clicks, only detector 1 clicks, only detector 2 clicks, and both detectors click. However, here we are considering an idealized scenario where photons are always detected and only one photon is sent to each observer.

  2. 2.

    There is an implicit assumption when writing this conditional probability distribution, namely that all the rounds of the experiment represent independent and identically distributed (iid) realizations of P(ab|xy). It is however possible to derive a form of Bell’s theorem valid without the iid assumption, see for instance [3]. Here, for the sake of simplicity, we work under the iid assumption.

  3. 3.

    It is at the moment an open problem whether a secret key, and not just a single bit, can be distributed in a realistic noisy scenario only under the assumption of the no-signalling principle.

  4. 4.

    Strictly speaking, the security proof in [10] was valid only under a specific class of attacks, known as collective attacks. A general security proof has later been established in [11].

  5. 5.

    The mutual information between two random variables A and B is defined as \(H(A:B)=\sum _{A,B}P(A,B)\log _2\left( \frac{P(A, B)}{P(A)P(B)}\right) \).

References

  1. J. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  2. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  3. R.D. Gill, Time, Finite Statistics, and Bell’s Fifth Position, Preprint at http://arxiv.org/abs/quant-ph/0301059 (2003); J. Barrett et al. Quantum nonlocality, Bell inequalities and the memory loophole. Phys. Rev. A 66, 042111 (2002); Y. Zhang, S. Glancy, E. Knill, Efficient quantification of experimental evidence against local realism. Phys. Rev. A 88, 052119 (2013)

  4. S. Pironio, arXiv:1510.00248

  5. A. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. C.H. Bennett, G. Brassard, N.D. Mermin, Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol.175, 1984, p. 8

    Google Scholar 

  8. D. Mayers, A. Yao, Self testing quantum apparatus. Found. Phys. 24, 379 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Barrett, L. Hardy, A. Kent, No signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  ADS  Google Scholar 

  10. A. Acín et al., Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  11. U. Vazirani, T. Vidick, Fully device independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  ADS  Google Scholar 

  12. L. Lydersen et al., Hacking commercial quantum cryptography systems by tailored bright illumination, Nature Phot. 4, 686 (2010); I. Gerhardt et al., Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Comm. 2, 349 (2011)

    Google Scholar 

  13. R. Colbeck, Quantum and Relativistic Protocols for Secure Multi-Party Computation, Ph.D. thesis, University of Cambridge, also available at http://arxiv.org/abs/0911.3814; S. Pironio et al., Random numbers certified by Bell’s theorem, Nature 464, 1021 (2010); R. Colbeck, A. Kent, Private Randomness Expansion With Untrusted Devices, J. Phys. A: Math. Th. 44(9), 095305 (2011)

  14. J.D. Bancal, N. Gisin, Y.C. Liang, S. Pironio, Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  15. S. Popescu, D. Rohrlich, Nonlocality as an axiom. Found. Phys. 24, 379 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. B. Tsirelson, Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Soviet Math. 36(4), 557 (1987); B. Tsirelson, Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8, 329 (1993)

    Google Scholar 

  17. T. Fritz, T. Netzer, A. Thom, Can you compute the operator norm? Proc. Am. Math. Soc. 142, 4265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. W. van Dam, Nonlocality and communication complexity, Ph.D. thesis, University of Oxford (2000); G. Brassard et al., Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 96, 250401 (2006)

    Google Scholar 

  19. N. Linden et al., Quantum nonlocality and beyond: limits from nonlocal computation. Phys. Rev. Lett. 99, 180502 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M. Pawłowski et al., Information causality as a physical principle. Nature 461, 1101 (2009)

    Article  ADS  Google Scholar 

  21. M. Navascués, H. Wunderlich, A glance beyond the quantum model. Proc. R. Soc. A 466, 881 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. T. Fritz et al., Local orthogonality as a multipartite principle for quantum correlations. Nat. Comm. 4, 2263 (2013)

    Article  ADS  Google Scholar 

  23. J. Allcock, N. Brunner, M. Pawłowski, V. Scarani, Recovering part of the boundary between quantum and nonquantum correlations from information causality. Phys. Rev. A 80, 040103 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Ahanj, Bound on Hardy’s nonlocality from the principle of information causality. Phys. Rev. A 81(3), 032103 (2010)

    Google Scholar 

  25. D. Cavalcanti, A. Salles, V. Scarani, Macroscopically local correlations can violate information causality. Nat. Comm. 1, 136 (2010)

    Article  ADS  Google Scholar 

  26. Y. Xiang, W. Ren, Bound on genuine multipartite correlations from the principle of information causality. Quant. Inf. Comp. 11, 0948 (2011)

    MathSciNet  MATH  Google Scholar 

  27. T.H. Yang et al., Information-causality and extremal tripartite correlations. New J. Phys. 14, 013061 (2012)

    Article  Google Scholar 

  28. R. Gallego, L.E. Würflinger, A. Acín, M. Navascués, Quantum correlations require multipartite information principles. Phys. Rev. Lett. 107, 210403 (2011)

    Article  ADS  Google Scholar 

  29. M. Navascués, Y. Guryanova, M. Hoban, A. Acín, Almost quantum correlations. Nat. Comm. 6, 6288 (2014)

    Google Scholar 

  30. J. Allcock, N. Brunner, M. Pawlowski, V. Scarani, Closed sets of non-local correlations. Phys. Rev. A 80, 062107 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. B. Lang, M. Navascués, T. Vertesi, Closed sets of correlations: answers from the zoo. J. Phys. A: Math. Theor. 47, 424029 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. B. Salman, A.A. Gohari, Monotone measure for non-local correlations, Preprint at http://arxiv.org/abs/1409.3665 (2014)

  33. T. Ito, H. Kobayashi, K. Matsumoto, Oracularization and Two-Prover One-Round Interactive Proofs against Nonlocal Strategies, Preprint at http://arxiv.org/abs/0810.0693 (2008)

  34. F. Dowker, J. Henson, P. Wallden, A histories perspective on characterising quantum non-locality. New J. Phys. 16, 033033 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Sorkin, Quantum mechanics as a quantum measure theory. Mod. Phys. Lett. 9, 3119 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. D. Abrams, S. Lloyd, Nonlinear quantum mechanics implies polynomial-time solution for \(\mathit{NP}\)-complete and #\(\mathit{P}\) problems. Phys. Rev. Lett. 81, 3992 (1998)

    Google Scholar 

  37. N. Gisin, Stochastic quantum dynamics and relativity. Helvetica Physica Acta 62, 363 (1989)

    MathSciNet  Google Scholar 

  38. J.D. Bancal et al., Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867 (2012)

    Article  Google Scholar 

  39. S. Popescu, Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264 (2014)

    Article  Google Scholar 

  40. S. Aaronson, Quantum computing, postselection, and probabilistic polynomial-time. Proc. R. Soc. A 461, 2063 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the ERC CoG QITBOX, the AXA Chair in Quantum Information Science, Spanish MINECO (FOQUS FIS2013-46768-P and SEV-2015-0522), Fundación Cellex, the Generalitat de Catalunya (SGR 875), the John Templeton Foundation and the FQXi grant “Towards an almost quantum physical theory”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Acín or Miguel Navascués .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Acín, A., Navascués, M. (2017). Black Box Quantum Mechanics. In: Bertlmann, R., Zeilinger, A. (eds) Quantum [Un]Speakables II. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-38987-5_17

Download citation

Publish with us

Policies and ethics