Skip to main content

Epidemiology of Hematologic Malignancies

  • Chapter
  • First Online:
Pathology and Epidemiology of Cancer

Abstract

Hematologic malignancies include a diverse group of lymphomas and leukemias that arise in cells of the immune and lymphatic systems. In general, genetic errors of normal processes of lymphocyte maturation and activation are believed to be central to lymphomagenesis, suggesting that factors that influence the host immune milieu in a manner that favors the survival and proliferation of transformed lymphocytes are likely to also contribute to their etiology. The following chapter discusses the epidemiology of three broad categories of hematologic malignancies grouped according to common risk factors and biology: Hodgkin lymphoma, non-Hodgkin lymphoma, and multiple myeloma. Each category includes multiple distinct cancers, and in some instances, also clinically relevant molecular subtypes, for which emerging evidence suggests some commonality but also some heterogeneity of etiology. This complexity makes it difficult to capture the unique epidemiology of each type of tumor comprehensively. In the following chapter, we will focus instead on the most common types of hematologic cancer to provide an overview of the epidemiology of these diseases and report the most consistently reported risk factor associations for each cancer subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma X. Epidemiology of myelodysplastic syndromes. Am J Med. 2012;125(7 Suppl):S2–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894–907.

    Article  PubMed  Google Scholar 

  3. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.

    Article  PubMed  CAS  Google Scholar 

  4. Rubnitz JE, Gibson B, Smith FO. Acute myeloid leukemia. Pediatr Clin N Am. 2008;55(1):21–51, ix.

    Google Scholar 

  5. Hoglund M, Sandin F, Simonsson B. Epidemiology of chronic myeloid leukaemia: an update. Ann Hematol. 2015;94(Suppl 2):S241–7.

    Article  PubMed  Google Scholar 

  6. Linet MS, Devesa SS, Morgan GJ. The Leukemias. In: Schottenfeld D, Fraumeni Jr. JF, editors. Cancer Epidemiology and Prevention, 3rd ed. New York. Oxford University Press; 2006.

    Google Scholar 

  7. Visser O, Trama A, Maynadie M, Stiller C, Marcos-Gragera R, De Angelis R, et al. Incidence, survival and prevalence of myeloid malignancies in Europe. Eur J Cancer. 2012;48(17):3257–66.

    Article  CAS  PubMed  Google Scholar 

  8. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). Pathology and genetics of tumours of haematopoietic and lymphoid tissues. World Health Organization Classification of Tumours. Lyon, France: IARC Press 2001.

    Google Scholar 

  9. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2008.

    Google Scholar 

  10. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision to the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Google Scholar 

  11. Morton LM, Turner JJ, Cerhan JR, Linet MS, Treseler PA, Clarke CA, et al. Proposed classification of lymphoid neoplasms for epidemiologic research from the pathology working group of the international lymphoma epidemiology consortium (InterLymph). Blood. 2007;110(2):695–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turner JJ, Morton LM, Linet MS, Clarke CA, Kadin ME, Vajdic CM, et al. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood. 2010;116(20):e90–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gobbi PG, Ferreri AJ, Ponzoni M, Levis A. Hodgkin lymphoma. Crit Rev Oncol Hematol. 2013;85(2):216–37.

    Article  PubMed  Google Scholar 

  14. Hoppe RT, Advani RH, Ai WZ, Ambinder RF, Aoun P, Bello CM, et al. Hodgkin lymphoma, version 2.2015. J Nat Compr Cancer Netw JNCCN. 2015;13(5):554–86.

    Google Scholar 

  15. Mueller NE, Grufferman S. Hodgkin lymphoma. In: Schottenfeld D, Fraumeni Jr. JF, editors. Cancer epidemiology and prevention, 3rd ed. New York. Oxford University Press;2006.

    Google Scholar 

  16. Marshall NA, Christie LE, Munro LR, Culligan DJ, Johnston PW, Barker RN, et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood. 2004;103(5):1755–62.

    Article  CAS  PubMed  Google Scholar 

  17. Poppema S. Immunobiology and pathophysiology of Hodgkin lymphomas. Hematol Educ Program Am Soc Hematol Am Soc Hematol Educ Program. 2005:231–8.

    Google Scholar 

  18. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  19. Kuppers R, Klein U, Hansmann ML, Rajewsky K. Cellular origin of human B-cell lymphomas. N Engl J Med. 1999;341(20):1520–9.

    Article  CAS  PubMed  Google Scholar 

  20. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s lymphoma classification project. Blood. 1997;89(11):3909–18.

    Google Scholar 

  21. Muller AM, Ihorst G, Mertelsmann R, Engelhardt M. Epidemiology of non-Hodgkin’s lymphoma (NHL): trends, geographic distribution, and etiology. Ann Hematol. 2005;84(1):1–12.

    Article  PubMed  Google Scholar 

  22. Al-Hamadani M, Habermann TM, Cerhan JR, Macon WR, Maurer MJ, Go RS. Non-Hodgkin lymphoma subtype distribution, geodemographic patterns, and survival in the US: A longitudinal analysis of the national cancer data base from 1998 to 2011. Am J Hematol. 2015;90(9):790–5.

    Article  PubMed  Google Scholar 

  23. Anderson JR, Armitage JO, Weisenburger DD. Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol Official J Eur Soc Med Oncol ESMO. 1998;9(7):717–20.

    Google Scholar 

  24. Aschebrook-Kilfoy B, Cocco P, La Vecchia C, Chang ET, Vajdic CM, Kadin ME, et al. Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sezary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Nat Cancer Inst Monogr. 2014;2014(48):98–105.

    Article  Google Scholar 

  25. Huh J. Epidemiologic overview of malignant lymphoma. Korean J Hematol. 2012;47(2):92–104.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO Classification of tumours of haematopoietic and lymphoid tissues. 4th ed. International Agency for Research on Cancer: Lyon; 2008.

    Google Scholar 

  27. Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33.

    Article  PubMed  Google Scholar 

  28. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113(22):5412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muller-Hermelink HK, Montserrat E, Catovsky D, Campo E, Harris NL, Stein H. Chronic lymphocytic leukemia/small lymphocytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele H, Vardiman JW, editors. WHO classification of tumors of haematopoietic and lymphoid tissue. Lyon: International Agency for Research on Cancer; 2008. p. 180–93.

    Google Scholar 

  30. Choi WW, Weisenburger DD, Greiner TC, Piris MA, Banham AH, Delabie J, et al. A new immunostain algorithm classifies diffuse large B-cell lymphoma into molecular subtypes with high accuracy. Clin Cancer Res Official J Am Assoc Cancer Res. 2009;15(17):5494–502.

    Article  CAS  Google Scholar 

  31. Meyer PN, Fu K, Greiner TC, Smith LM, Delabie J, Gascoyne RD, et al. Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol Official J Am Soc Clin Oncol. 2011;29(2):200–7.

    Article  Google Scholar 

  32. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.

    Article  CAS  PubMed  Google Scholar 

  33. Lenz G. Insights into the molecular pathogenesis of activated B-cell-like diffuse large B-Cell lymphoma and its therapeutic implications. Cancers (Basel). 2015;7(2):811–22.

    Article  Google Scholar 

  34. Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A. 2008;105(36):13520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakata S, Tsuyama N, Takeuchi K. Pathology of indolent B-cell neoplasms other than follicular lymphoma. J Clin Exp Hematop. 2014;54(1):11–22.

    Article  PubMed  Google Scholar 

  36. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010;24(6):1121–7.

    Article  CAS  PubMed  Google Scholar 

  38. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.

    Article  PubMed  Google Scholar 

  39. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International myeloma working group. Br J Haematol. 2003;121(5):749–57.

    Article  Google Scholar 

  40. Kyle RA, Rajkumar SV. Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma. 2009;9(4):278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, et al. Revised international staging system for multiple myeloma: a report from international myeloma working group. J Clin Oncol Official J Am Soc Clin Oncol. 2015;33(26):2863–9.

    Article  CAS  Google Scholar 

  42. Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood. 2009;113(22):5418–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Landgren O, Kyle RA, Hoppin JA, Beane Freeman LE, Cerhan JR, Katzmann JA, et al. Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the agricultural health study. Blood. 2009;113(25):6386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Landgren O, Weiss BM. Patterns of monoclonal gammopathy of undetermined significance and multiple myeloma in various ethnic/racial groups: support for genetic factors in pathogenesis. Leukemia. 2009;23(10):1691–7.

    Article  CAS  PubMed  Google Scholar 

  45. Watanaboonyongcharoen P, Nakorn TN, Rojnuckarin P, Lawasut P, Intragumtornchai T. Prevalence of monoclonal gammopathy of undetermined significance in Thailand. Int J Hematol. 2012;95(2):176–81.

    Article  CAS  PubMed  Google Scholar 

  46. Landgren O, Katzmann JA, Hsing AW, Pfeiffer RM, Kyle RA, Yeboah ED, et al. Prevalence of monoclonal gammopathy of undetermined significance among men in Ghana. Mayo Clin Proc. 2007;82(12):1468–73.

    Article  PubMed  Google Scholar 

  47. Wu SP, Minter A, Costello R, Zingone A, Lee CK, Au WY, et al. MGUS prevalence in an ethnically Chinese population in Hong Kong. Blood. 2013;121(12):2363–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vachon CM, Kyle RA, Therneau TM, Foreman BJ, Larson DR, Colby CL, et al. Increased risk of monoclonal gammopathy in first-degree relatives of patients with multiple myeloma or monoclonal gammopathy of undetermined significance. Blood. 2009;114(4):785–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Landgren O, Kristinsson SY, Goldin LR, Caporaso NE, Blimark C, Mellqvist UH, et al. Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood. 2009;114(4):791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kyle RA, Remstein ED, Therneau TM, Dispenzieri A, Kurtin PJ, Hodnefield JM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007;356(25):2582–90.

    Article  CAS  PubMed  Google Scholar 

  51. Mateos MV, Hernandez MT, Giraldo P, de la Rubia J, de Arriba F, Lopez Corral L, et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med. 2013;369(5):438–47.

    Article  CAS  PubMed  Google Scholar 

  52. van de Donk NW, Lokhorst HM, Anderson KC, Richardson PG. How I treat plasma cell leukemia. Blood. 2012;120(12):2376–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kyle RA, Maldonado JE, Bayrd ED. Plasma cell leukemia. Report on 17 cases. Arch Intern Med. 1974;133(5):813–8.

    Article  CAS  PubMed  Google Scholar 

  54. Fernandez de Larrea C, Kyle RA, Durie BG, Ludwig H, Usmani S, Vesole DH, et al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the international myeloma working group. Leukemia. 2013;27(4):780–91.

    Article  CAS  PubMed  Google Scholar 

  55. Noel P, Kyle RA. Plasma cell leukemia: an evaluation of response to therapy. Am J Med. 1987;83(6):1062–8.

    Article  CAS  PubMed  Google Scholar 

  56. American Cancer Society. Cancer facts and figures 2015. Atlanta, GA: American Cancer Society; 2015.

    Google Scholar 

  57. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. Bethesda, MD. http://seer.cancer.gov/csr/1975_2011/, based on November 2013 SEER data submission, posted to the SEER web site, April 2014.

  58. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr. Accessed on 20 July 2015.

  59. American Cancer Society. Cancer facts and figures 2014. Atlanta: American Cancer Society; 2014.

    Google Scholar 

  60. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z,Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER cancer statistics review, 1975–2012, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2012/, based on November 2014 SEER data submission, posted to the SEER web site, April 2015..

  61. Boffetta PI. Epidemiology of adult non-Hodgkin lymphoma. Ann Oncol Official J Eur Soc Med Oncol ESMO. 2011;22(suppl 4):iv27–iv31.

    Google Scholar 

  62. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER cancer statistics review, 1975–2010, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, April 2013.

  63. Landgren O, Gridley G, Turesson I, Caporaso NE, Goldin LR, Baris D, et al. Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States. Blood. 2006;107(3):904–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Landgren O, Graubard BI, Katzmann JA, Kyle RA, Ahmadizadeh I, Clark R, et al. Racial disparities in the prevalence of monoclonal gammopathies: a population-based study of 12,482 persons from the national health and nutritional examination survey. Leukemia. 2014;28(7):1537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Corso A, Klersy C, Lazzarino M, Bernasconi C. Multiple myeloma in younger patients: the role of age as prognostic factor. Ann Hematol. 1998;76(2):67–72.

    Article  CAS  PubMed  Google Scholar 

  66. Ludwig H, Durie BG, Bolejack V, Turesson I, Kyle RA, Blade J, et al. Myeloma in patients younger than age 50 years presents with more favorable features and shows better survival: an analysis of 10 549 patients from the International Myeloma Working Group. Blood. 2008;111(8):4039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ludwig H, Bolejack V, Crowley J, Blade J, Miguel JS, Kyle RA, et al. Survival and years of life lost in different age cohorts of patients with multiple myeloma. J Clin Oncol Official J Am Soc Clin Oncol. 2010;28(9):1599–605.

    Article  Google Scholar 

  68. Turesson I, Velez R, Kristinsson SY, Landgren O. Patterns of multiple myeloma during the past 5 decades: stable incidence rates for all age groups in the population but rapidly changing age distribution in the clinic. Mayo Clin Proc. 2010;85(3):225–30.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tuchman SA, Shapiro GR, Ershler WB, Badros A, Cohen HJ, Dispenzieri A, et al. Multiple myeloma in the very old: an IASIA conference report. J Nat Cancer Inst. 2014;106(5).

    Google Scholar 

  70. Baxi SS, Matasar MJ. State-of-the-art issues in Hodgkin’s lymphoma survivorship. Curr Oncol Rep. 2010;12(6):366–73.

    Article  PubMed  Google Scholar 

  71. van Leeuwen FE, Klokman WJ, Hagenbeek A, Noyon R, van den Belt-Dusebout AW, van Kerkhoff EH, et al. Second cancer risk following Hodgkin’s disease: a 20-year follow-up study. J Clin Oncol Official J Am Soc Clin Oncol. 1994;12(2):312–25.

    Google Scholar 

  72. Kaldor JM, Day NE, Clarke EA, Van Leeuwen FE, Henry-Amar M, Fiorentino MV, et al. Leukemia following Hodgkin’s disease. N Engl J Med. 1990;322(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  73. Hodgson DC, Gilbert ES, Dores GM, Schonfeld SJ, Lynch CF, Storm H, et al. Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J Clin Oncol Official J Am Soc Clin Oncol. 2007;25(12):1489–97.

    Article  Google Scholar 

  74. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28(2):269–77.

    Article  CAS  PubMed  Google Scholar 

  76. Warren JL, Harlan LC, Stevens J, Little RF, Abel GA. Multiple myeloma treatment transformed: a population-based study of changes in initial management approaches in the United States. J Clin Oncol Official J Am Soc Clin Oncol. 2013;31(16):1984–9.

    Article  CAS  Google Scholar 

  77. Turesson I, Velez R, Kristinsson SY, Landgren O. Patterns of improved survival in patients with multiple myeloma in the twenty-first century: a population-based study. J Clin Oncol Official J Am Soc Clin Oncol. 2010;28(5):830–4.

    Article  Google Scholar 

  78. Ailawadhi S, Aldoss IT, Yang D, Razavi P, Cozen W, Sher T, et al. Outcome disparities in multiple myeloma: a SEER-based comparative analysis of ethnic subgroups. Br J Haematol. 2012;158(1):91–8.

    Article  PubMed  Google Scholar 

  79. Pulte D, Jansen L, Castro FA, Emrich K, Katalinic A, Holleczek B, et al. Trends in survival of multiple myeloma patients in Germany and the United States in the first decade of the 21st century. Br J Haematol. 2015.

    Google Scholar 

  80. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.

    Article  CAS  PubMed  Google Scholar 

  81. De Roos AJ, Baris D, Weiss NS, Herrington LJ. Multiple Myeloma. In: Schottenfeld D, Fraumeni Jr. JF, editors. Cancer epidemiology and prevention, 3rd ed. New York. Oxford University Press;2006.

    Google Scholar 

  82. Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332(7):413–8.

    Article  CAS  PubMed  Google Scholar 

  83. Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O. Highly increased familial risks for specific lymphoma subtypes. Br J Haematol. 2009;146(1):91–4.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goldin LR, Pfeiffer RM, Gridley G, Gail MH, Li X, Mellemkjaer L, et al. Familial aggregation of Hodgkin lymphoma and related tumors. Cancer. 2004;100(9):1902–8.

    Article  PubMed  Google Scholar 

  85. Diepstra A, Niens M, te Meerman GJ, Poppema S, van den Berg A. Genetic susceptibility to Hodgkin’s lymphoma associated with the human leukocyte antigen region. Eur J Haematol Suppl. 2005;66:34–41.

    Article  CAS  PubMed  Google Scholar 

  86. Enciso-Mora V, Broderick P, Ma Y, Jarrett RF, Hjalgrim H, Hemminki K, et al. A genome-wide association study of Hodgkin’s lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3). Nat Genet. 2010;42(12):1126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Urayama KY, Jarrett RF, Hjalgrim H, Diepstra A, Kamatani Y, Chabrier A, et al. Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. J Natl Cancer Inst. 2012;104(3):240–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Frampton M, da Silva Filho MI, Broderick P, Thomsen H, Forsti A, Vijayakrishnan J, et al. Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin’s lymphoma. Nat Commun. 2013;4:2549.

    Article  PubMed  CAS  Google Scholar 

  89. Westergaard T, Melbye M, Pedersen JB, Frisch M, Olsen JH, Andersen PK. Birth order, sibship size and risk of Hodgkin’s disease in children and young adults: a population-based study of 31 million person-years. Int J Cancer J Int du Cancer. 1997;72(6):977–81.

    Article  CAS  Google Scholar 

  90. Chang ET, Zheng T, Weir EG, Borowitz M, Mann RB, Spiegelman D, et al. Childhood social environment and Hodgkin’s lymphoma: new findings from a population-based case-control study. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2004;13(8):1361–70.

    Google Scholar 

  91. Chang ET, Montgomery SM, Richiardi L, Ehlin A, Ekbom A, Lambe M. Number of siblings and risk of Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2004;13(7):1236–43.

    Google Scholar 

  92. Gutensohn N, Cole P. Childhood social environment and Hodgkin’s disease. N Engl J Med. 1981;304(3):135–40.

    Article  CAS  PubMed  Google Scholar 

  93. Mack TM, Norman JE, Jr., Rappaport E, Cozen W. Childhood Determination of Hodgkin lymphoma among U.S. servicemen. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2015.

    Google Scholar 

  94. Glaser SL, Clarke CA, Nugent RA, Stearns CB, Dorfman RF. Social class and risk of Hodgkin’s disease in young-adult women in 1988–94. Int J Cancer J Int du Cancer. 2002;98(1):110–7.

    Article  CAS  Google Scholar 

  95. Lennette ET, Rymo L, Yadav M, Masucci G, Merk K, Timar L, et al. Disease-related differences in antibody patterns against EBV-encoded nuclear antigens EBNA 1, EBNA 2 and EBNA 6. Eur J Cancer. 1993;29A(11):1584–9.

    Article  CAS  PubMed  Google Scholar 

  96. Henle W, Henle G, Andersson J, Ernberg I, Klein G, Horwitz CA, et al. Antibody responses to Epstein-Barr virus-determined nuclear antigen (EBNA)-1 and EBNA-2 in acute and chronic Epstein-Barr virus infection. Proc Natl Acad Sci U S A. 1987;84(2):570–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mueller NE, Lennette ET, Dupnik K, Birmann BM. Antibody titers against EBNA1 and EBNA2 in relation to Hodgkin lymphoma and history of infectious mononucleosis. Int J Cancer J Int du Cancer. 2012;130(12):2886–91.

    Article  CAS  Google Scholar 

  98. Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320(11):689–95.

    Article  CAS  PubMed  Google Scholar 

  99. Gutensohn N, Cole P. Epidemiology of Hodgkin’s disease. Semin Oncol. 1980;7(2):92–102.

    CAS  PubMed  Google Scholar 

  100. Jarrett RF. Viruses and Hodgkin’s lymphoma. Ann Oncol Official J Eur Soc Med Oncol ESMO. 2002;13(Suppl 1):23–9.

    Article  Google Scholar 

  101. Hjalgrim H, Askling J, Rostgaard K, Hamilton-Dutoit S, Frisch M, Zhang JS, et al. Characteristics of Hodgkin’s lymphoma after infectious mononucleosis. N Engl J Med. 2003;349(14):1324–32.

    Article  CAS  PubMed  Google Scholar 

  102. Hjalgrim H, Smedby KE, Rostgaard K, Molin D, Hamilton-Dutoit S, Chang ET, et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 2007;67(5):2382–8.

    Article  CAS  PubMed  Google Scholar 

  103. Elgui de Oliveira D, Bacchi MM, Abreu ES, Niero-Melo L, Bacchi CE. Hodgkin disease in adult and juvenile groups from two different geographic regions in Brazil: characterization of clinicopathologic aspects and relationship with Epstein-Barr virus infection. Am J Clin Pathol. 2002;118(1):25–30.

    Google Scholar 

  104. Glaser SL, Lin RJ, Stewart SL, Ambinder RF, Jarrett RF, Brousset P, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer J Int du Cancer. 1997;70(4):375–82.

    Article  CAS  Google Scholar 

  105. Herbst H, Dallenbach F, Hummel M, Niedobitek G, Pileri S, Muller-Lantzsch N, et al. Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Sci U S A. 1991;88(11):4766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Herbst H, Niedobitek G, Kneba M, Hummel M, Finn T, Anagnostopoulos I, et al. High incidence of Epstein-Barr virus genomes in Hodgkin’s disease. Am J Pathol. 1990;137(1):13–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Huh J, Park C, Juhng S, Kim CE, Poppema S, Kim C. A pathologic study of Hodgkin’s disease in Korea and its association with Epstein-Barr virus infection. Cancer. 1996;77(5):949–55.

    Article  CAS  PubMed  Google Scholar 

  108. Pallesen G, Hamilton-Dutoit SJ, Rowe M, Young LS. Expression of Epstein-Barr virus latent gene products in tumour cells of Hodgkin’s disease. Lancet. 1991;337(8737):320–2.

    Article  CAS  PubMed  Google Scholar 

  109. Diebold J, Raphael M, Prevot S, Audouin J. Lymphomas associated with HIV infection. Cancer Surv. 1997;30:263–93.

    CAS  PubMed  Google Scholar 

  110. Riedel DJ, Rositch AF, Redfield RR, Blattner WA. HIV-associated lymphoma sub-type distribution, immunophenotypes and survival in an urban clinic population. Leuk lymphoma. 2015:1–7.

    Google Scholar 

  111. Benharroch D, Shemer-Avni Y, Levy A, Myint YY, Ariad S, Rager B, et al. New candidate virus in association with Hodgkin’s disease. Leuk Lymphoma. 2003;44(4):605–10.

    Article  CAS  PubMed  Google Scholar 

  112. Maggio E, Benharroch D, Gopas J, Dittmer U, Hansmann ML, Kuppers R. Absence of measles virus genome and transcripts in Hodgkin-Reed/Sternberg cells of a cohort of Hodgkin lymphoma patients. Int J Cancer J Int du Cancer. 2007;121(2):448–53.

    Article  CAS  Google Scholar 

  113. Wilson KS, Freeland JM, Gallagher A, Cosby SL, Earle JA, Alexander FE, et al. Measles virus and classical Hodgkin lymphoma: no evidence for a direct association. Int J Cancer J Int du Cancer. 2007;121(2):442–7.

    Article  CAS  Google Scholar 

  114. Kramer U, Heinrich J, Wjst M, Wichmann HE. Age of entry to day nursery and allergy in later childhood. Lancet. 1999;353(9151):450–4.

    Article  CAS  PubMed  Google Scholar 

  115. Ball TM, Castro-Rodriguez JA, Griffith KA, Holberg CJ, Martinez FD, Wright AL. Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med. 2000;343(8):538–43.

    Article  CAS  PubMed  Google Scholar 

  116. Chang ET, Zheng T, Weir EG, Borowitz M, Mann RB, Spiegelman D, et al. Aspirin and the risk of Hodgkin’s lymphoma in a population-based case-control study. J Natl Cancer Inst. 2004;96(4):305–15.

    Article  CAS  PubMed  Google Scholar 

  117. Chang ET, Froslev T, Sorensen HT, Pedersen L. A nationwide study of aspirin, other non-steroidal anti-inflammatory drugs, and Hodgkin lymphoma risk in Denmark. Br J Cancer. 2011;105(11):1776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Briggs NC, Hall HI, Brann EA, Moriarty CJ, Levine RS. Cigarette smoking and risk of Hodgkin’s disease: a population-based case-control study. Am J Epidemiol. 2002;156(11):1011–20.

    Article  PubMed  Google Scholar 

  119. Kroll ME, Murphy F, Pirie K, Reeves GK, Green J, Beral V, et al. Alcohol drinking, tobacco smoking and subtypes of haematological malignancy in the UK Million Women Study. Br J Cancer. 2012;107(5):879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lim U, Morton LM, Subar AF, Baris D, Stolzenberg-Solomon R, Leitzmann M, et al. Alcohol, smoking, and body size in relation to incident Hodgkin’s and non-Hodgkin’s lymphoma risk. Am J Epidemiol. 2007;166(6):697–708.

    Article  PubMed  Google Scholar 

  121. Nieters A, Deeg E, Becker N. Tobacco and alcohol consumption and risk of lymphoma: results of a population-based case-control study in Germany. Int J Cancer J Int du Cancer. 2006;118(2):422–30.

    Article  CAS  Google Scholar 

  122. Kamper-Jorgensen M, Rostgaard K, Glaser SL, Zahm SH, Cozen W, Smedby KE, et al. Cigarette smoking and risk of Hodgkin lymphoma and its subtypes: a pooled analysis from the international lymphoma epidemiology consortium (InterLymph). Ann Oncol Official J Eur Soc Med Oncol ESMO. 2013;24(9):2245–55.

    Article  CAS  Google Scholar 

  123. Larsson SC, Wolk A. Body mass index and risk of non-Hodgkin’s and Hodgkin’s lymphoma: a meta-analysis of prospective studies. Eur J Cancer. 2011;47(16):2422–30.

    Article  PubMed  Google Scholar 

  124. Murphy F, Kroll ME, Pirie K, Reeves G, Green J, Beral V. Body size in relation to incidence of subtypes of haematological malignancy in the prospective million women study. Br J Cancer. 2013;108(11):2390–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Keegan TH, Glaser SL, Clarke CA, Dorfman RF, Mann RB, DiGiuseppe JA, et al. Body size, physical activity, and risk of Hodgkin’s lymphoma in women. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2006;15(6):1095–101.

    Article  Google Scholar 

  126. Li Q, Chang ET, Bassig BA, Dai M, Qin Q, Gao Y, et al. Body size and risk of Hodgkin’s lymphoma by age and gender: a population-based case-control study in Connecticut and Massachusetts. Cancer Causes Control CCC. 2013;24(2):287–95.

    Article  CAS  PubMed  Google Scholar 

  127. Epstein MM, Chang ET, Zhang Y, Fung TT, Batista JL, Ambinder RF, et al. Dietary pattern and risk of hodgkin lymphoma in a population-based case-control study. Am J Epidemiol. 2015;182(5):405–16.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gao Y, Li Q, Bassig BA, Chang ET, Dai M, Qin Q, et al. Subtype of dietary fat in relation to risk of Hodgkin lymphoma: a population-based case-control study in Connecticut and Massachusetts. Cancer Causes Control CCC. 2013;24(3):485–94.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lopez-Garcia E, Schulze MB, Fung TT, Meigs JB, Rifai N, Manson JE, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2004;80(4):1029–35.

    CAS  PubMed  Google Scholar 

  130. Nettleton JA, Steffen LM, Mayer-Davis EJ, Jenny NS, Jiang R, Herrington DM, et al. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the multi-ethnic study of atherosclerosis (MESA). Am J Clin Nutr. 2006;83(6):1369–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Besson H, Brennan P, Becker N, De Sanjose S, Nieters A, Font R, et al. Tobacco smoking, alcohol drinking and Hodgkin’s lymphoma: a European multi-centre case-control study (EPILYMPH). Br J Cancer. 2006;95(3):378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gorini G, Stagnaro E, Fontana V, Miligi L, Ramazzotti V, Amadori D, et al. Alcohol consumption and risk of Hodgkin’s lymphoma and multiple myeloma: a multicentre case-control study. Ann Oncol Official J Eur Soc Med Oncol ESMO. 2007;18(1):143–8.

    Article  CAS  Google Scholar 

  133. Monnereau A, Orsi L, Troussard X, Berthou C, Fenaux P, Soubeyran P, et al. Cigarette smoking, alcohol drinking, and risk of lymphoid neoplasms: results of a French case-control study. Cancer Causes Control CCC. 2008;19(10):1147–60.

    Article  CAS  PubMed  Google Scholar 

  134. Romeo J, Warnberg J, Nova E, Diaz LE, Gomez-Martinez S, Marcos A. Moderate alcohol consumption and the immune system: a review. Br J Nutr. 2007;98(Suppl 1):S111–5.

    CAS  PubMed  Google Scholar 

  135. Chang ET, Canchola AJ, Clarke CA, Lu Y, West DW, Bernstein L, et al. Dietary phytocompounds and risk of lymphoid malignancies in the California teachers study cohort. Cancer Causes Control CCC. 2011;22(2):237–49.

    Article  PubMed  Google Scholar 

  136. Kasperzyk JL, Chang ET, Birmann BM, Kraft P, Zheng T, Mueller NE. Nutrients and genetic variation involved in one-carbon metabolism and Hodgkin lymphoma risk: a population-based case-control study. Am J Epidemiol. 2011;174(7):816–27.

    Article  PubMed  PubMed Central  Google Scholar 

  137. La Vecchia C, Chatenoud L, Negri E, Franceschi S. Session: whole cereal grains, fibre and human cancer wholegrain cereals and cancer in Italy. Proc Nutr Soc. 2003;62(1):45–9.

    Article  PubMed  Google Scholar 

  138. Negri E, La Vecchia C, Franceschi S, D’Avanzo B, Parazzini F. Vegetable and fruit consumption and cancer risk. Int J Cancer J Int du Cancer. 1991;48(3):350–4.

    Article  CAS  Google Scholar 

  139. Tavani A, Pregnolato A, Negri E, Franceschi S, Serraino D, Carbone A, et al. Diet and risk of lymphoid neoplasms and soft tissue sarcomas. Nutr Cancer. 1997;27(3):256–60.

    Article  CAS  PubMed  Google Scholar 

  140. McCunney RJ. Hodgkin’s disease, work, and the environment. A review. J Occup Environ Med Am Coll Occup Environ Med. 1999;41(1):36–46.

    Article  CAS  Google Scholar 

  141. Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, Skibola CF, et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin lymphoma subtypes project. J Nat Cancer Inst Monogr. 2014;2014(48):130–44.

    Article  Google Scholar 

  142. Bertrand KA, Chang ET, Abel GA, Zhang SM, Spiegelman D, Qureshi AA, et al. Sunlight exposure, vitamin D, and risk of non-Hodgkin lymphoma in the Nurses’ Health Study. Cancer Causes Control CCC. 2011;22(12):1731–41.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chang ET, Canchola AJ, Cockburn M, Lu Y, Wang SS, Bernstein L, et al. Adulthood residential ultraviolet radiation, sun sensitivity, dietary vitamin D, and risk of lymphoid malignancies in the California Teachers Study. Blood. 2011;118(6):1591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Skibola CF, Bracci PM, Nieters A, Brooks-Wilson A, de Sanjose S, Hughes AM, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) polymorphisms and risk of non-Hodgkin lymphoma in the InterLymph Consortium. Am J Epidemiol. 2010;171(3):267–76.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lan Q, Wang SS, Menashe I, Armstrong B, Zhang Y, Hartge P, et al. Genetic variation in Th1/Th2 pathway genes and risk of non-Hodgkin lymphoma: a pooled analysis of three population-based case-control studies. Br J Haematol. 2011;153(3):341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lan Q, Zheng T, Shen M, Zhang Y, Wang SS, Zahm SH, et al. Genetic polymorphisms in the oxidative stress pathway and susceptibility to non-Hodgkin lymphoma. Hum Genet. 2007;121(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  147. Morton LM, Purdue MP, Zheng T, Wang SS, Armstrong B, Zhang Y, et al. Risk of non-Hodgkin lymphoma associated with germline variation in genes that regulate the cell cycle, apoptosis, and lymphocyte development. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2009;18(4):1259–70.

    Article  CAS  Google Scholar 

  148. Rothman N, Skibola CF, Wang SS, Morgan G, Lan Q, Smith MT, et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol. 2006;7(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  149. Shen M, Menashe I, Morton LM, Zhang Y, Armstrong B, Wang SS, et al. Polymorphisms in DNA repair genes and risk of non-Hodgkin lymphoma in a pooled analysis of three studies. Br J Haematol. 2010;151(3):239–44.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wang SS, Purdue MP, Cerhan JR, Zheng T, Menashe I, Armstrong BK, et al. Common gene variants in the tumor necrosis factor (TNF) and TNF receptor superfamilies and NF-kB transcription factors and non-Hodgkin lymphoma risk. PLoS ONE. 2009;4(4):e5360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Berndt SI, Skibola CF, Joseph V, Camp NJ, Nieters A, Wang Z, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45(8):868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cerhan JR, Berndt SI, Vijai J, Ghesquieres H, McKay J, Wang SS, et al. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46(11):1233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Skibola CF, Berndt SI, Vijai J, Conde L, Wang Z, Yeager M, et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet. 2014;95(4):462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vijai J, Wang Z, Berndt SI, Skibola CF, Slager SL, de Sanjose S, et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6:5751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Clifford GM, Polesel J, Rickenbach M, Dal Maso L, Keiser O, Kofler A, et al. Cancer risk in the Swiss HIV cohort study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005;97(6):425–32.

    Article  PubMed  Google Scholar 

  156. Silverberg MJ, Chao C, Leyden WA, Xu L, Horberg MA, Klein D, et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2011;20(12):2551–9.

    Article  CAS  Google Scholar 

  157. Eltom MA, Jemal A, Mbulaiteye SM, Devesa SS, Biggar RJ. Trends in Kaposi’s sarcoma and non-Hodgkin’s lymphoma incidence in the United States from 1973 through 1998. J Natl Cancer Inst. 2002;94(16):1204–10.

    Article  PubMed  Google Scholar 

  158. Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet. 1993;342(8886–8887):1514–6.

    Article  CAS  PubMed  Google Scholar 

  159. Ekstrom Smedby K, Vajdic CM, Falster M, Engels EA, Martinez-Maza O, Turner J, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029–38.

    Google Scholar 

  160. Fallah M, Liu X, Ji J, Forsti A, Sundquist K, Hemminki K. Autoimmune diseases associated with non-Hodgkin lymphoma: a nationwide cohort study. Ann Oncol Official J Eur Soc Med Oncol ESMO. 2014;25(10):2025–30.

    Article  CAS  Google Scholar 

  161. Linet MS, Vajdic CM, Morton LM, de Roos AJ, Skibola CF, Boffetta P, et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Nat Cancer Inst Monogr. 2014;2014(48):26–40.

    Article  Google Scholar 

  162. Wang SS, Flowers CR, Kadin ME, Chang ET, Hughes AM, Ansell SM, et al. Medical history, lifestyle, family history, and occupational risk factors for peripheral T-cell lymphomas: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Nat Cancer Inst Monogr. 2014;2014(48):66–75.

    Article  Google Scholar 

  163. Mbulaiteye SM, Morton LM, Sampson JN, Chang ET, Costas L, de Sanjose S, et al. Medical history, lifestyle, family history, and occupational risk factors for sporadic Burkitt lymphoma/leukemia: the Interlymph Non-Hodgkin lymphoma subtypes project. J Nat Cancer Inst Monogr. 2014;2014(48):106–14.

    Article  Google Scholar 

  164. Smedby KE, Sampson JN, Turner JJ, Slager SL, Maynadie M, Roman E, et al. Medical history, lifestyle, family history, and occupational risk factors for mantle cell lymphoma: the InterLymph Non-Hodgkin Lymphoma subtypes project. J Nat Cancer Inst Monogr. 2014;2014(48):76–86.

    Article  Google Scholar 

  165. Vajdic CM, Landgren O, McMaster ML, Slager SL, Brooks-Wilson A, Smith A, et al. Medical history, lifestyle, family history, and occupational risk factors for lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Nat Cancer Inst Monogr. 2014;2014(48):87–97.

    Article  Google Scholar 

  166. Slager SL, Benavente Y, Blair A, Vermeulen R, Cerhan JR, Costantini AS, et al. Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma subtypes project. J Nat Cancer Inst Monogr. 2014;2014(48):41–51.

    Article  Google Scholar 

  167. International Agency for Research on Cancer (IARC). Human T-cell lymphotropic viruses. In: IARC. Monographs on the evaluation of carcinogenic risks to humans. Vol 67. Lyon: IARC, 1996:261–390.

    Google Scholar 

  168. Mueller N, Birmann B, Parsonnet J, Schiffman M, Stuver S. Infectious agents. In: Schottenfeld D, Fraumeni Jr. JF, editors. Cancer epidemiology and prevention, 3rd ed. New York. Oxford University Press; 2006.

    Google Scholar 

  169. Zucca E, Bertoni F, Vannata B, Cavalli F. Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas. Clin Cancer Res Official J Am Assoc Cancer Res. 2014;20(20):5207–16.

    Article  CAS  Google Scholar 

  170. Piriou E, Asito AS, Sumba PO, Fiore N, Middeldorp JM, Moormann AM, et al. Early age at time of primary Epstein-Barr virus infection results in poorly controlled viral infection in infants from Western Kenya: clues to the etiology of endemic Burkitt lymphoma. J Infect Dis. 2012;205(6):906–13.

    Article  PubMed  PubMed Central  Google Scholar 

  171. de-The G. Epstein-Barr virus and Burkitt’s lymphoma worldwide: the causal relationship revisited. IARC scientific publications. 1985(60):165–76.

    Google Scholar 

  172. Bornkamm GW. Epstein-Barr virus and the pathogenesis of Burkitt’s lymphoma: more questions than answers. Int J Cancer J Int du Cancer. 2009;124(8):1745–55.

    Article  CAS  Google Scholar 

  173. Satou A, Asano N, Nakazawa A, Osumi T, Tsurusawa M, Ishiguro A, et al. Epstein-Barr virus (EBV)-positive sporadic burkitt lymphoma: an age-related lymphoproliferative disorder? Am J Surg Pathol. 2015;39(2):227–35.

    Article  PubMed  Google Scholar 

  174. Teras LR, Rollison DE, Pawlita M, Michel A, Brozy J, de Sanjose S, et al. Epstein-Barr virus and risk of non-Hodgkin lymphoma in the cancer prevention study-II and a meta-analysis of serologic studies. Int J Cancer J Int du Cancer. 2015;136(1):108–16.

    Article  CAS  Google Scholar 

  175. Peveling-Oberhag J, Arcaini L, Hansmann ML, Zeuzem S. Hepatitis C-associated B-cell non-Hodgkin lymphomas. Epidemiology, molecular signature and clinical management. J Hepatol. 2013;59(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  176. Bracci PM, Benavente Y, Turner JJ, Paltiel O, Slager SL, Vajdic CM, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma subtypes project. J Nat Cancer Inst Monogr. 2014;2014(48):52–65.

    Article  Google Scholar 

  177. Cerhan JR, Kricker A, Paltiel O, Flowers CR, Wang SS, Monnereau A, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin lymphoma subtypes project. J Nat Cancer Inst Monogr. 2014;2014(48):15–25.

    Article  Google Scholar 

  178. Kabat GC, Kim MY, Jean Wactawski W, Bea JW, Edlefsen KL, Adams-Campbell LL, et al. Anthropometric factors, physical activity, and risk of non-Hodgkin’s lymphoma in the Women’s Health Initiative. Cancer Epidemiol. 2012;36(1):52–9.

    Article  PubMed  Google Scholar 

  179. Willett EV, Morton LM, Hartge P, Becker N, Bernstein L, Boffetta P, et al. Non-Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph Consortium. Int J Cancer J Int du Cancer. 2008;122(9):2062–70.

    Article  CAS  Google Scholar 

  180. van Veldhoven CM, Khan AE, Teucher B, Rohrmann S, Raaschou-Nielsen O, Tjonneland A, et al. Physical activity and lymphoid neoplasms in the European prospective investigation into cancer and nutrition (EPIC). Eur J Cancer. 2011;47(5):748–60.

    Article  PubMed  Google Scholar 

  181. Teras LR, Gapstur SM, Diver WR, Birmann BM, Patel AV. Recreational physical activity, leisure sitting time and risk of non-Hodgkin lymphoid neoplasms in the american cancer society cancer prevention study II cohort. Int J Cancer J International du Cancer. 2012;131(8):1912–20.

    Article  CAS  Google Scholar 

  182. Jochem C, Leitzmann MF, Keimling M, Schmid D, Behrens G. Physical activity in relation to risk of hematologic cancers: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2014;23(5):833–46.

    Article  Google Scholar 

  183. Cahoon EK, Pfeiffer RM, Wheeler DC, Arhancet J, Lin SW, Alexander BH, et al. Relationship between ambient ultraviolet radiation and non-Hodgkin lymphoma subtypes: a U.S. population-based study of racial and ethnic groups. Int J Cancer J Int du Cancer. 2015;136(5):E432–41.

    Google Scholar 

  184. Luczynska A, Kaaks R, Rohrmann S, Becker S, Linseisen J, Buijsse B, et al. Plasma 25-hydroxyvitamin D concentration and lymphoma risk: results of the European prospective investigation into cancer and nutrition. Am J Clin Nutr. 2013;98(3):827–38.

    Article  CAS  PubMed  Google Scholar 

  185. Erber E, Maskarinec G, Lim U, Kolonel LN. Dietary vitamin D and risk of non-Hodgkin lymphoma: the multiethnic cohort. Br J Nutr. 2010;103(4):581–4.

    Article  CAS  PubMed  Google Scholar 

  186. Ollberding NJ, Aschebrook-Kilfoy B, Caces DB, Smith SM, Weisenburger DD, Chiu BC. Dietary patterns and the risk of non-Hodgkin lymphoma. Pub Health Nutr. 2014;17(7):1531–7.

    Article  Google Scholar 

  187. Erber E, Maskarinec G, Gill JK, Park SY, Kolonel LN. Dietary patterns and the risk of non-Hodgkin lymphoma: the Multiethnic Cohort. Leuk Lymphoma. 2009;50(8):1269–75.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Campagna M, Cocco P, Zucca M, Angelucci E, Gabbas A, Latte GC, et al. Risk of lymphoma subtypes and dietary habits in a Mediterranean area. Cancer Epidemiol. 2015.

    Google Scholar 

  189. Zhang S, Hunter DJ, Rosner BA, Colditz GA, Fuchs CS, Speizer FE, et al. Dietary fat and protein in relation to risk of non-Hodgkin’s lymphoma among women. J Natl Cancer Inst. 1999;91(20):1751–8.

    Article  CAS  PubMed  Google Scholar 

  190. Zhang SM, Hunter DJ, Rosner BA, Giovannucci EL, Colditz GA, Speizer FE, et al. Intakes of fruits, vegetables, and related nutrients and the risk of non-Hodgkin’s lymphoma among women. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2000;9(5):477–85.

    CAS  Google Scholar 

  191. Chen GC, Lv DB, Pang Z, Liu QF. Fruits and vegetables consumption and risk of non-Hodgkin’s lymphoma: a meta-analysis of observational studies. Int J Cancer J Int du Cancer. 2013;133(1):190–200.

    Article  CAS  Google Scholar 

  192. Charbonneau B, O’Connor HM, Wang AH, Liebow M, Thompson CA, Fredericksen ZS, et al. Trans fatty acid intake is associated with increased risk and n3 fatty acid intake with reduced risk of non-hodgkin lymphoma. J Nutr. 2013;143(5):672–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Morton LM, Hartge P, Holford TR, Holly EA, Chiu BC, Vineis P, et al. Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the international lymphoma epidemiology consortium (interlymph). Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14(4):925–33.

    Article  CAS  Google Scholar 

  194. Monnereau A, Slager SL, Hughes AM, Smith A, Glimelius B, Habermann TM, et al. Medical history, lifestyle, and occupational risk factors for hairy cell leukemia: the InterLymph Non-Hodgkin Lymphoma subtypes project. J Nat Cancer Inst Monogr. 2014;2014(48):115–24.

    Article  Google Scholar 

  195. Morton LM, Zheng T, Holford TR, Holly EA, Chiu BC, Costantini AS, et al. Alcohol consumption and risk of non-Hodgkin lymphoma: a pooled analysis. Lancet Oncol. 2005;6(7):469–76.

    Article  CAS  PubMed  Google Scholar 

  196. Chang ET, Clarke CA, Canchola AJ, Lu Y, Wang SS, Ursin G, et al. Alcohol consumption over time and risk of lymphoid malignancies in the California Teachers Study cohort. Am J Epidemiol. 2010;172(12):1373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Neasham D, Sifi A, Nielsen KR, Overvad K, Raaschou-Nielsen O, Tjonneland A, et al. Occupation and risk of lymphoma: a multicentre prospective cohort study (EPIC). Occup Environ Med. 2011;68(1):77–81.

    Article  PubMed  Google Scholar 

  198. Cocco P, Vermeulen R, Flore V, Nonne T, Campagna M, Purdue M, et al. Occupational exposure to trichloroethylene and risk of non-Hodgkin lymphoma and its major subtypes: a pooled InterLymph [correction of IinterLlymph] analysis. Occup Environ Med. 2013;70(11):795–802.

    Article  CAS  PubMed  Google Scholar 

  199. Karami S, Bassig B, Stewart PA, Lee KM, Rothman N, Moore LE, et al. Occupational trichloroethylene exposure and risk of lymphatic and haematopoietic cancers: a meta-analysis. Occup Environ Med. 2013;70(8):591–9.

    Article  PubMed  Google Scholar 

  200. Schenk M, Purdue MP, Colt JS, Hartge P, Blair A, Stewart P, et al. Occupation/industry and risk of non-Hodgkin’s lymphoma in the United States. Occup Environ Med. 2009;66(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  201. Kelly RS, Lundh T, Porta M, Bergdahl IA, Palli D, Johansson AS, et al. Blood erythrocyte concentrations of cadmium and lead and the risk of B-cell non-Hodgkin’s lymphoma and multiple myeloma: a nested case-control study. PLoS ONE. 2013;8(11):e81892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Ramis R, Diggle P, Boldo E, Garcia-Perez J, Fernandez-Navarro P, Lopez-Abente G. Analysis of matched geographical areas to study potential links between environmental exposure to oil refineries and non-Hodgkin lymphoma mortality in Spain. Int J Health Geogr. 2012;11:4.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Greenberg AJ, Rajkumar SV, Vachon CM. Familial monoclonal gammopathy of undetermined significance and multiple myeloma: epidemiology, risk factors, and biological characteristics. Blood. 2012;119(23):5359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Alexander DD, Mink PJ, Adami HO, Cole P, Mandel JS, Oken MM, et al. Multiple myeloma: a review of the epidemiologic literature. Int J Cancer J Int du Cancer. 2007;120(Suppl 12):40–61.

    Article  CAS  Google Scholar 

  205. Ogmundsdottir HM, Haraldsdottirm V, Johannesson GM, Olafsdottir G, Bjarnadottir K, Sigvaldason H, et al. Familiality of benign and malignant paraproteinemias. A population-based cancer-registry study of multiple myeloma families. Haematologica. 2005;90(1):66–71.

    PubMed  Google Scholar 

  206. Lynch HT, Watson P, Tarantolo S, Wiernik PH, Quinn-Laquer B, Isgur Bergsagel K, et al. Phenotypic heterogeneity in multiple myeloma families. J Clin Oncol Official J Am Soc Clin Oncol. 2005;23(4):685–93.

    Article  CAS  Google Scholar 

  207. Broderick P, Chubb D, Johnson DC, Weinhold N, Forsti A, Lloyd A, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat Genet. 2012;44(1):58–61.

    Article  CAS  Google Scholar 

  208. Chubb D, Weinhold N, Broderick P, Chen B, Johnson DC, Forsti A, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet. 2013;45(10):1221–5.

    Article  CAS  PubMed  Google Scholar 

  209. Morgan GJ, Johnson DC, Weinhold N, Goldschmidt H, Landgren O, Lynch HT, et al. Inherited genetic susceptibility to multiple myeloma. Leukemia. 2014;28(3):518–24.

    Article  CAS  PubMed  Google Scholar 

  210. Weinhold N, Johnson DC, Chubb D, Chen B, Forsti A, Hosking FJ, et al. The CCND1 c.870G > A polymorphism is a risk factor for t(11;14)(q13;q32) multiple myeloma. Nat Genet. 2013;45(5):522–5.

    Article  CAS  PubMed  Google Scholar 

  211. Ziv E, Dean E, Hu D, Martino A, Serie D, Curtin K, et al. Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nat Commun. 2015;6:7539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Avet-Loiseau H, Durie BG, Cavo M, Attal M, Gutierrez N, Haessler J, et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an international myeloma working group collaborative project. Leukemia. 2013;27(3):711–7.

    Article  CAS  PubMed  Google Scholar 

  213. Neben K, Jauch A, Bertsch U, Heiss C, Hielscher T, Seckinger A, et al. Combining information regarding chromosomal aberrations t(4;14) and del(17p13) with the International Staging System classification allows stratification of myeloma patients undergoing autologous stem cell transplantation. Haematologica. 2010;95(7):1150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Martino A, Campa D, Jurczyszyn A, Martinez-Lopez J, Moreno MJ, Varkonyi J, et al. Genetic variants and multiple myeloma risk: IMMEnSE validation of the best reported associations — an extensive replication of the associations from the candidate gene era. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2014;23(4):670–4.

    Article  CAS  Google Scholar 

  215. Birmann BM, Tamimi RM, Giovannucci E, Rosner B, Hunter DJ, Kraft P, et al. Insulin-like growth factor-1-and interleukin-6-related gene variation and risk of multiple myeloma. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2009;18(1):282–8.

    Article  CAS  Google Scholar 

  216. Cozen W, Gebregziabher M, Conti DV, Van Den Berg DJ, Coetzee GA, Wang SS, et al. Interleukin-6-related genotypes, body mass index, and risk of multiple myeloma and plasmacytoma. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2006;15(11):2285–91.

    Article  CAS  Google Scholar 

  217. Lauta VM. A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer. 2003;97(10):2440–52.

    Article  CAS  PubMed  Google Scholar 

  218. Papadaki H, Kyriakou D, Foudoulakis A, Markidou F, Alexandrakis M, Eliopoulos GD. Serum levels of soluble IL-6 receptor in multiple myeloma as indicator of disease activity. Acta Haematol. 1997;97(4):191–5.

    Article  CAS  PubMed  Google Scholar 

  219. Birmann BM, Neuhouser ML, Rosner B, Albanes D, Buring JE, Giles GG, et al. Prediagnosis biomarkers of insulin-like growth factor-1, insulin, and interleukin-6 dysregulation and multiple myeloma risk in the Multiple Myeloma Cohort Consortium. Blood. 2012;120(25):4929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Teras LR, Kitahara CM, Birmann BM, Hartge PA, Wang SS, Robien K, et al. Body size and multiple myeloma mortality: a pooled analysis of 20 prospective studies. Br J Haematol. 2014;166(5):667–76.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Birmann BM, Giovannucci E, Rosner B, Anderson KC, Colditz GA. Body mass index, physical activity, and risk of multiple myeloma. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2007;16(7):1474–8.

    Article  Google Scholar 

  222. Khan MM, Mori M, Sakauchi F, Matsuo K, Ozasa K, Tamakoshi A, et al. Risk factors for multiple myeloma: evidence from the Japan Collaborative Cohort (JACC) study. Asian Pac J Cancer Prev. 2006;7(4):575–81.

    CAS  PubMed  Google Scholar 

  223. Hofmann JN, Liao LM, Pollak MN, Wang Y, Pfeiffer RM, Baris D, et al. A prospective study of circulating adipokine levels and risk of multiple myeloma. Blood. 2012;120(22):4418–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dalamaga M, Karmaniolas K, Panagiotou A, Hsi A, Chamberland J, Dimas C, et al. Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: a case-control study. Cancer Causes Control CCC. 2009;20(2):193–9.

    Article  PubMed  Google Scholar 

  225. Reseland JE, Reppe S, Olstad OK, Hjorth-Hansen H, Brenne AT, Syversen U, et al. Abnormal adipokine levels and leptin-induced changes in gene expression profiles in multiple myeloma. Eur J Haematol. 2009;83(5):460–70.

    Article  CAS  PubMed  Google Scholar 

  226. Birmann BM, Giovannucci EL, Rosner BA, Colditz GA. Regular aspirin use and risk of multiple myeloma: a prospective analysis in the Health Professionals Follow-up Study and Nurses’ Health Study. Cancer Prev Res. 2013.

    Google Scholar 

  227. Teras LR, Gapstur SM, Patel AV, Thun MJ, Diver WR, Zhai Y, et al. Aspirin and other nonsteroidal anti-inflammatory drugs and risk of non-hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2013;22:422–8.

    Google Scholar 

  228. Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008;18(1):19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115(17):3541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Klein B. Positioning NK-kappaB in multiple myeloma. Blood. 2010;115(17):3422–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Moysich KB, Bonner MR, Beehler GP, Marshall JR, Menezes RJ, Baker JA, et al. Regular analgesic use and risk of multiple myeloma. Leuk Res. 2007;31(4):547–51.

    Article  CAS  PubMed  Google Scholar 

  232. Andreotti G, Birmann B, De Roos AJ, Spinelli J, Cozen W, Camp NJ, et al. A pooled analysis of alcohol consumption and risk of multiple myeloma in the international multiple myeloma consortium. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2013;22(9):1620–7.

    Article  Google Scholar 

  233. Andreotti G, Birmann BM, Cozen W, De Roos AJ, Chiu BC, Costas L, et al. A pooled analysis of cigarette smoking and risk of multiple myeloma from the international multiple myeloma consortium. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2015;24(3):631–4.

    Article  CAS  Google Scholar 

  234. LeMasters GK, Genaidy AM, Succop P, Deddens J, Sobeih T, Barriera-Viruet H, et al. Cancer risk among firefighters: a review and meta-analysis of 32 studies. J Occup Environ Med Am Coll Occup Environ Med. 2006;48(11):1189–202.

    Article  Google Scholar 

  235. Pukkala E, Martinsen JI, Weiderpass E, Kjaerheim K, Lynge E, Tryggvadottir L, et al. Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries. Occup Environ Med. 2014;71(6):398–404.

    Article  PubMed  Google Scholar 

  236. Perrotta C, Kleefeld S, Staines A, Tewari P, De Roos AJ, Baris D, et al. Multiple myeloma and occupation: a pooled analysis by the international multiple myeloma consortium. Cancer Epidemiol. 2013;37(3):300–5.

    Article  PubMed  Google Scholar 

  237. Perrotta C, Staines A, Codd M, Kleefeld S, Crowley D, T’Mannetje A, et al. Multiple myeloma and lifetime occupation: results from the EPILYMPH study. J Occup Med Toxicol. 2012;7(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Baris D, Silverman DT, Brown LM, Swanson GM, Hayes RB, Schwartz AG, et al. Occupation, pesticide exposure and risk of multiple myeloma. Scand J Work Environ Health. 2004;30(3):215–22.

    Article  PubMed  Google Scholar 

  239. Ruder AM, Hein MJ, Hopf NB, Waters MA. Mortality among 24,865 workers exposed to polychlorinated biphenyls (PCBs) in three electrical capacitor manufacturing plants: a ten-year update. Int J Hyg Environ Health. 2014;217(2–3):176–87.

    Article  CAS  PubMed  Google Scholar 

  240. Stenehjem JS, Kjaerheim K, Bratveit M, Samuelsen SO, Barone-Adesi F, Rothman N, et al. Benzene exposure and risk of lymphohaematopoietic cancers in 25 000 offshore oil industry workers. Br J Cancer. 2015;112(9):1603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wong O, Raabe GK. Multiple myeloma and benzene exposure in a multinational cohort of more than 250,000 petroleum workers. Regul Toxicol Pharmacol RTP. 1997;26(2):188–99.

    Article  CAS  PubMed  Google Scholar 

  242. Tsai RJ, Luckhaupt SE, Schumacher P, Cress RD, Deapen DM, Calvert GM. Risk of cancer among firefighters in California, 1988–2007. Am J Ind Med. 2015;58(7):715–29.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry: estimates of radiation-related cancer risks. Radiat Res. 2007;167(4):396–416.

    Article  CAS  PubMed  Google Scholar 

  244. Muirhead CR, O’Hagan JA, Haylock RG, Phillipson MA, Willcock T, Berridge GL, et al. Mortality and cancer incidence following occupational radiation exposure: third analysis of the national registry for radiation workers. Br J Cancer. 2009;100(1):206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Schubauer-Berigan MK, Daniels RD, Bertke SJ, Tseng CY, Richardson DB. Cancer Mortality through 2005 among a pooled cohort of U.S. Nuclear workers exposed to external ionizing radiation. Radiat Res. 2015;183(6):620–31.

    Article  CAS  PubMed  Google Scholar 

  246. Takkouche B, Regueira-Mendez C, Montes-Martinez A. Risk of cancer among hairdressers and related workers: a meta-analysis. Int J Epidemiol. 2009;38(6):1512–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Meyer Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Batista, J.L., Birmann, B.M., Epstein, M.M. (2017). Epidemiology of Hematologic Malignancies. In: Loda, M., Mucci, L., Mittelstadt, M., Van Hemelrijck, M., Cotter, M. (eds) Pathology and Epidemiology of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-35153-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35153-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35151-3

  • Online ISBN: 978-3-319-35153-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics