Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 794 Accesses

Abstract

This chapter discusses the use of titanium dioxide as the active material in photo-electrochemical cells for the electrolysis of water, with the aim of producing a source of renewable hydrogen. Recent reports of sensitizing TiO2 to visible light using localized surface plasmon resonance (LSPR) on metal nanoparticles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See http://www3.imperial.ac.uk/energyfutureslab/research/grandchallenges/artificialleaf.

  2. 2.

    To the knowledge of the author of this thesis, there has not been a related publication.

References

  1. De-La-Rosa, Y.: World Population to 2300, pp. 1–254. United Nations Publications, NY (2004)

    Google Scholar 

  2. International Energy Agency: World Energy Outlook 2010 International Energy Agency, Paris (2010)

    Google Scholar 

  3. Solomon, S.: Climate Change 2007—The Physical Science Basis. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  4. Britain, G.: Climate Change Act 2008. The Stationery Office, London (2008)

    Google Scholar 

  5. Boyle, G.: Renewable Energy. Oxford University Press, Oxford (2012)

    Google Scholar 

  6. Twidell, J. Weir, A.D. Renewable Energy Resources. Taylor & Francis, London (2006)

    Google Scholar 

  7. Larminie, J., Dicks, A.: Fuel Cell Systems Explained. Wiley, NY (2003)

    Google Scholar 

  8. Hoffmann, P.: Tomorrow’s Energy. MIT Press, Cambridge (2012)

    Google Scholar 

  9. Khaselev, O., Bansal, A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy. 1–6 (2000)

    Google Scholar 

  10. Pijpers, J.J., Winkler, M.T., Surendranath, Y., Buonassisi, T., Nocera, D.G.: Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst. Proc. Natl. Acad. Sci. U.S.A. 108, 10056–10061 (2011)

    Article  Google Scholar 

  11. Vayssieres, L.: On Solar Hydrogen and Nanotechnology. Wiley, NY (2010)

    Google Scholar 

  12. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  13. Kudo, A.: Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bull. 36, 32–38 (2011)

    Article  Google Scholar 

  14. Rajeshwar, K., McConnell, RD., Licht, S.: Solar Hydrogen Generation. Springer, New York (2008). doi:10.1007/978-0-387-72810-0

    Google Scholar 

  15. Dresselhaus, M., Crabtree, G., Buchanan, M.: Basic Research Needs for the Hydrogen Economy. (2003)

    Google Scholar 

  16. Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. Oxford University Press, Oxford (2010)

    Google Scholar 

  17. Osterloh, F.E., Parkinson, B.A.: Recent developments in solar water-splitting photocatalysis. MRS Bull. 36, 17–22 (2011)

    Article  Google Scholar 

  18. Cronemeyer, D.C.: Electrical and optical properties of rutile single crystals. Phys. Rev. 87, 876 (1952)

    Article  Google Scholar 

  19. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    Article  Google Scholar 

  20. Liao, P., Toroker, M.C., Carter, E.A.: Electron transport in pure and doped hematite. Nano Lett. 11, 1775–1781 (2011)

    Article  Google Scholar 

  21. Tian, Y., Tatsuma, T.: Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810 (2004). doi:10.1039/b405061d

  22. Thimsen, E., Le Formal, F., Grätzel, M., Warren, S.C.: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35–43 (2011)

    Article  Google Scholar 

  23. Xu, Y., Schoonen, M.A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)

    Article  Google Scholar 

  24. Archer, M.D., Nozik, A.J.: Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion. World Scientific Publishing, Singapore (2008)

    Google Scholar 

  25. Cesar, I., Kay, A., Gonzalez Martinez, J.A., Grätzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128, 4582–4583 (2006)

    Article  Google Scholar 

  26. Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976)

    Article  Google Scholar 

  27. Fujishima, A.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  28. Boddy, P.J.: Oxygen evolution on semiconducting TiO2. J. Electrochem. Soc. 115, 199–203 (1968)

    Article  Google Scholar 

  29. Grimes, C.A., Varghese, O.K., Ranjan, S.: Light, Water, Hydrogen. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  30. Sivula, K., Le Formal, F., Graetzel, M.: WO3-Fe2O3 photoanodes for water scaffold splitting: a host. Guest Absorber Approach Chem. Mater. 21, 2862–2867 (2009)

    Google Scholar 

  31. Maeda, K., Domen, K.: Oxynitride materials for solar water splitting. MRS Bull. 36, 25–31 (2011)

    Article  Google Scholar 

  32. Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K., Misawa, H.: Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 1, 2031–2036 (2010)

    Article  Google Scholar 

  33. Nishijima, Y., Nigorinuma, H., Rosa, L., Juodkazis, S.: Selective enhancement of infrared absorption with metal hole arrays. Opt. Mater. Express 2, 1367–1377 (2012)

    Article  Google Scholar 

  34. Tian, Y., Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005)

    Article  Google Scholar 

  35. Sakai, N., Tatsuma, T.: Photovoltaic properties of glutathione-protected gold clusters adsorbed on TiO2 electrodes. Adv. Mater. 22, 3185–3188 (2010)

    Article  Google Scholar 

  36. García, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44, 283001 (2011)

    Article  Google Scholar 

  37. Centeno, A., Xie, F., Alford, N.: Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles. J. Opt. Soc. Am. B 28, 325–330 (2011)

    Article  Google Scholar 

  38. Catchpole, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008)

    Article  Google Scholar 

  39. Beck, F.J., Verhagen, E., Mokkapati, S., Polman, A., Catchpole, K.R.: Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express 19, A146–A156 (2011)

    Article  Google Scholar 

  40. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer, Berlin (2007)

    Google Scholar 

  41. Zhang, G., Wang, D.: Colloidal lithography-the art of nanochemical patterning. Chem. Asian J. 4, 236–245 (2009)

    Article  Google Scholar 

  42. Centeno, A., Breeze, J., Ahmed, B., Reehal, H., Alford, N.: Scattering of light into silicon by spherical and hemispherical silver nanoparticles. Opt. Lett. 35, 76–78 (2009)

    Article  Google Scholar 

  43. Liu, Z., Hou, W., Pavaskar, P., Aykol, M., Cronin, S.B.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111–1116 (2010)

    Article  Google Scholar 

  44. Naseri, N., Amiri, M., Moshfegh, A.Z.: Visible photoenhanced current–voltage characteristics of Au : TiO2 nanocomposite thin films as photoanodes. J. Phys. D Appl. Phys. 43, 105405 (2010)

    Article  Google Scholar 

  45. Chandrasekharan, N., Kamat, P.V.: Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B 104, 10851–10857 (2000)

    Article  Google Scholar 

  46. Kittel, C.: Introduction to Solid State Physics. Wiley, NY (2004)

    Google Scholar 

  47. Petek, H., Ogawa, S.: Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997)

    Article  Google Scholar 

  48. Petek, H., Nagano, H., Ogawa, S.: Hole decoherence of d bands in copper. Phys. Rev. Lett. 83, 832–835 (1999)

    Article  Google Scholar 

  49. Sachtler, W., Dorgelo, G., Holscher, A.A.: The work function of gold. Surf. Sci. 5, 221–229 (1966)

    Article  Google Scholar 

  50. Giugni, A., et al.: Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845–852 (2013)

    Article  Google Scholar 

  51. Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  Google Scholar 

  52. Knight, M.W., Sobhani, H., Nordlander, P., Halas, N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011)

    Article  Google Scholar 

  53. Mubeen, S., et al.: An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013)

    Article  Google Scholar 

  54. Mukherjee, S., et al.: Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013)

    Article  Google Scholar 

  55. Cushing, S.K., et al.: Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012)

    Article  Google Scholar 

  56. Li, J., et al.: Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3, 47–51 (2013)

    Article  Google Scholar 

  57. Sundararaman, R., Narang, P., Jermyn, A.S., Goddard III, W.A., Atwater, H.A.: Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014)

    Article  Google Scholar 

  58. Manjavacas, A., Liu, J.G., Kulkarni, V., Nordlander, P.: Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014)

    Article  Google Scholar 

  59. Govorov, A.O., Zhang, H., Gun’ko, Y.K.: Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C. 117, 16616–16631 (2013)

    Google Scholar 

  60. Forbes, R.G., Deane, J.H.B.: Reformulation of the standard theory of Fowler-Nordheim tunnelling and cold field electron emission. Proc. R. Soc. Lon. A. Math. Phys. 463, 2907–2927 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. Murphy, E.L., Good Jr, R.H.: Thermionic emission, field emission, and the transition region. Phys. Rev. 102, 1464 (1956)

    Article  Google Scholar 

  62. Fowler, R.H. Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A Math. Phys. Sci. 173–181 (1928)

    Google Scholar 

  63. Lau, Y.Y., Liu, Y., Parker, R.K.: Electron emission: from the Fowler-Nordheim relation to the Child-Langmuir law. Phys. Plasmas 1, 2082–2085 (1994)

    Article  Google Scholar 

  64. Lin, H.Y., Chou, Y.Y., Cheng, C.L., Chen, Y.F.: Giant enhancement of band edge emission based on ZnO/TiO2 nanocomposites. Opt. Express 15, 13832–13837 (2007)

    Article  Google Scholar 

  65. Hernández-Martínez, P. Govorov, A.: Exciton energy transfer between nanoparticles and nanowires. Phys. Rev. B. 78, (2008)

    Google Scholar 

  66. Neretina, S., et al.: Plasmon field effects on the nonradiative relaxation of hot electrons in an electronically quantized system: CdTe–Au core–shell nanowires. Nano Lett. 8, 2410–2418 (2008)

    Article  Google Scholar 

  67. Makhal, A., et al.: Dynamics of light harvesting in ZnO nanoparticles. Nanotechnology 21, 265703 (2010)

    Article  Google Scholar 

  68. Andrews, D.L.: A unified theory of radiative and radiationless molecular energy transfer. Chem. Phys. 135, 195–201 (1989)

    Article  Google Scholar 

  69. Andrews, D.L., Bradshaw, D.S.: Virtual photons, dipole fields and energy transfer: a quantum electrodynamical approach. Eur. J. Phys. 25, 845–858 (2004)

    Article  MATH  Google Scholar 

  70. Andrews, D.L., Curutchet, C., Scholes, G.D.: Resonance energy transfer: Beyond the limits. Laser Photon. Rev. 5, 114–123 (2010)

    Article  Google Scholar 

  71. Fox, M.: Optical Properties of Solids. Oxford University Press, Oxford (2010)

    Google Scholar 

  72. Furube, A., Du, L., Hara, K., Katoh, R., Tachiya, M.: Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007)

    Article  Google Scholar 

  73. Karp, G.: Cell and Molecular Biology. Wiley, NY (2009)

    Google Scholar 

  74. Allongue, P.: In: Bockris, J., Conway, B.E. White, R.E. (eds.) Modern Aspects of Electrochemistry. vol. 23, pp. 239–314 (1992)

    Google Scholar 

  75. Patel, M., Mallia, G., Liborio, L., Harrison, N.M.: Water adsorption on rutile TiO2 (110) for applications in solar hydrogen production: a systematic hybrid-exchange density functional study. Phys. Rev. B 86, 045302 (2012)

    Article  Google Scholar 

  76. Blomquist, J., Walle, L.E., Uvdal, P., Borg, A., Sandell, A.: Water dissociation on single crystalline anatase TiO2 (001) studied by photoelectron spectroscopy. J. Phys. Chem. C 112, 16616–16621 (2008)

    Article  Google Scholar 

  77. Sumita, M., Hu, C., Tateyama, Y.: Interface water on TiO2 anatase (101) and (001) surfaces: first-principles study with TiO2 slabs dipped in bulk water. J. Phys. Chem. C 114, 18529–18537 (2010)

    Article  Google Scholar 

  78. Walle, L.E., et al.: Mixed dissociative and molecular water adsorption on anatase TiO2 (101). J. Phys. Chem. C 115, 9545–9550 (2011)

    Article  Google Scholar 

  79. Yang, H.G., et al.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)

    Article  Google Scholar 

  80. Grinter, D.C., Nicotra, M., Thornton, G.: Acetic acid adsorption on anatase TiO2 (101). J. Phys. Chem. C 116, 11643–11651 (2012)

    Article  Google Scholar 

  81. Silva, V.F., et al.: Substrate-controlled allotropic phases and growth orientation of TiO2 epitaxial thin films. J. Appl. Cryst. 43, 1502–1512 (2010). doi:10.1107/S0021889810041221

    Google Scholar 

  82. Hitosugi, T., et al.: Fabrication of TiO2-based transparent conducting oxide films on glass by pulsed laser deposition. Jpn. J. Appl. Phys. 46, L86–L88 (2007)

    Article  Google Scholar 

  83. Hitosugi, T., et al.: Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl. Phys. Express 1, 111203 (2008)

    Article  Google Scholar 

  84. Hsieh, C., et al.: Monophasic TiO2 films deposited on SrTiO3 (100) by pulsed laser ablation. J. Appl. Phys. 92, 2518–2523 (2002)

    Article  Google Scholar 

  85. Nakamura, R., Okamura, T., Ohashi, N., Imanishi, A., Nakato, Y.: Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (Rutile) surfaces in aqueous acidic solutions. J. Am. Chem. Soc. 127, 12975–12983 (2005)

    Article  Google Scholar 

  86. Yamamoto, S., Sumita, T., Miyashita, A.: Preparation of TiO2-anatase film on Si (001) substrate with TiN and SrTiO3 as buffer layers. J. Phys. Condens. Matter 13, 2875 (2001)

    Article  Google Scholar 

  87. McDaniel, M.D., Posadas, A., Wang, T., Demkov, A.A., Ekerdt, J.G.: Growth and characterization of epitaxial anatase TiO2 (001) on SrTiO3-buffered Si (001) using atomic layer deposition. Thin Solid Films 520, 6525–6530 (2012)

    Article  Google Scholar 

  88. Sanches, F.F., Mallia, G., Liborio, L., Diebold, U., Harrison, N.M.: Hybrid exchange density functional study of vicinal anatase TiO2 surfaces. Phys. Rev. B 89(24), 5309 (2014)

    Article  Google Scholar 

  89. Furubayashi, Y., et al.: A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86(25), 2101 (2005)

    Article  Google Scholar 

  90. Furubayashi, Y., et al.: Novel transparent conducting oxide: anatase TiNbO. Thin Solid Films 496, 157–159 (2006)

    Article  Google Scholar 

  91. Hitosugi, T., et al.: Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate. Thin Solid Films 516, 5750–5753 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Callum Alexander .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alexander, J.C. (2016). Literature Review. In: Surface Modifications and Growth of Titanium Dioxide for Photo-Electrochemical Water Splitting. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-34229-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34229-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34227-6

  • Online ISBN: 978-3-319-34229-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics