Skip to main content

Renal Denervation: A Historical Perspective

  • Chapter
  • First Online:
Interventional Therapies for Secondary and Essential Hypertension

Abstract

The role of the sympathetic nervous system (SNS) in the development of hypertension and in particular of resistant hypertension has long been recognized. A great deal of work has been done attempting to explore potential interventions to interrupt the sympathetic influence on systemic vasculature and target organs. Renal denervation (RDN) is not a new technique, and it does not address a newly discovered concept. Surgical RDN was applied almost 150 years ago in an attempt to treat a variety of disorders including renal pain, proteinuria, and severe or malignant hypertension. In animal models surgical RDN was utilized to totally resect and interrupt sympathetic fibers. Renal nerves were resected with a scalpel bilaterally, and the renal arteries were painted with phenol to totally eradicate all sympathetic fibers. Indeed surgical renal denervation resulted in up to 99 % reduction of renal norepinephrine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

BP:

Blood pressure

dRHTN:

Drug-resistant hypertension

GFR:

Glomerular filtration rate

HF:

Heart failure

NEPI:

Norepinephrine

RDN:

Renal denervation

RF:

Radiofrequency

SHR:

Spontaneously hypertensive rats

SNS:

Sympathetic nervous system

WKY:

Wistar Kyoto

References

  1. Bernard C (1859) Lecons sur les proprietes physiologiques et les alterations pathologiques des liquides de l’organisme. Bailliere, Paris 2:170–191

    Google Scholar 

  2. Bradford JR (1889) The innervation of the renal blood vessels. J Physiol 10:358–432, 18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DiBona GF, Esler M (2010) Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol 298:R245–R253

    Article  CAS  PubMed  Google Scholar 

  4. Campese VM, Ku E, Park J (2011) Sympathetic renal innervation and resistant hypertension. Int J Hypertens 2011:814354

    Article  PubMed  PubMed Central  Google Scholar 

  5. DiBona GF (2005) Physiology in perspective: the wisdom of the body–neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 289:R633–R641

    Article  CAS  PubMed  Google Scholar 

  6. Webb RL, Brody MJ (1987) Functional identification of the central projections of afferent renal nerves. Clin Exp Hypertens A 9(Suppl 1):47–57

    PubMed  Google Scholar 

  7. Campese VM, Kogosov E (1995) Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 25(4 pt 2):878–882

    Article  CAS  PubMed  Google Scholar 

  8. Malpas SC, Evans RG (1998) Do different levels and patterns of sympathetic activation all provoke renal vasoconstriction? J Auton Nerv Syst 69:72–82

    Article  CAS  PubMed  Google Scholar 

  9. DiBona GF, Sawin LL (1982) Effect of renal nerve stimulation on NaCl and H2O transport in Henle’s loop of the rat. Am J Physiol 243:F576–F580

    CAS  PubMed  Google Scholar 

  10. Smyth DD, Umemura S, Pettinger WA (1985) Renal nerve stimulation causes alpha 1-adrenoceptor-mediated sodium retention but not alpha 2-adrenoceptor antagonism of vasopressin. Circ Res 57:304–311

    Article  PubMed  Google Scholar 

  11. Osborn JL, DiBona GF, Thames MD (1981) Beta-1 receptor mediation of renin secretion elicited by low-frequency renal nerve stimulation. J Pharmacol Exp Ther 216:265–269

    CAS  PubMed  Google Scholar 

  12. O’Hagan KP, Thomas GD, Zambraski EJ (1990) Renal denervation decreases blood pressure in DOCA-treated miniature swine with established hypertension. Am J Hypertens 3:62–64

    PubMed  Google Scholar 

  13. Huang WC, Fang TC, Cheng JT (1998) Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats. Hypertension 32:249–254

    Article  CAS  PubMed  Google Scholar 

  14. Katholi RE, ALLEN J, Naftilan AJ, Oparil S (1980) Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat. Hypertension 2:266–273

    Article  CAS  PubMed  Google Scholar 

  15. Greenberg SG, Enders C, Osborn JL (1993) Renal nerves affect rate of achieving sodium balance in spontaneously hypertensive rats. Hypertension 22:1–8

    Article  CAS  PubMed  Google Scholar 

  16. Katholi RE, Wimnetrnitz SR, Oparil S (1982) Decrease in peripheral sympathetic nervous activity system activity following renal denervation or unclipping in the one-kidney one-clip Goldblatt hypertensive rat. J Clin Inv 69:55–62

    Article  CAS  Google Scholar 

  17. Author unknown (1947) Neurosurgical treatment, indications and results (chapter 7, methods of operation). J Intern Med 127:72–76

    Google Scholar 

  18. Adson AW, McCraig W, Brown GE (1936) Surgery in its relation to hypertension. Surg Gynecol Obstet 62:314–331

    Google Scholar 

  19. Weiss E (1939) Recent advances in the pathogenesis and treatment of hypertension, a review. Psychosom Med 1:180–198

    Article  Google Scholar 

  20. Sen SK (1936) Some observations on decapsulation and denervation of the kidney. Brit J Urol 8:319–328

    Article  Google Scholar 

  21. Papin E, Ambard L (1924) Resection of the nerves of the kidney for nephralgia and small hydronephroses. J Urol 11:337–349

    Google Scholar 

  22. Page IH, Heuer GJ (1935) The effect of renal denervation on the level of arterial blood pressure and renal function in essential hypertension. J Clin Invest 14:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Page IH, Heuer GJ (1935) The effect of renal denervation on patients suffering from nephritis. J Clin Invest 14:443–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peet MM (1948) Hypertension and its surgical treatment by supradiaphragmatic splanchnicectomy. Am J Surg LXXV:48–68

    Article  Google Scholar 

  25. Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc 152:1501–1504

    Article  CAS  PubMed  Google Scholar 

  26. Peet MM, Woods WW, Braden S (1940) The surgical treatment of hypertension. JAMA 115:1875–1885

    Article  Google Scholar 

  27. Freis ED, Wanko A, Wilson IM, Parrish AE (1958) Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents. J Am Med Assoc 166:137–140

    Article  CAS  PubMed  Google Scholar 

  28. VA Cooperative Study Group (1967) Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 202:1028–1034

    Article  Google Scholar 

  29. Wallin BG, Charkoudian N (2007) Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve 36:595–614

    Article  CAS  PubMed  Google Scholar 

  30. Grassi G, Seravalle G, Quarti-Trevano F (2010) The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol 95:581–586

    Article  PubMed  Google Scholar 

  31. Fisher JP, Young CN, Fadel PJ (2009) Central sympathetic overactivity: maladies and mechanisms. Auton Neurosci 148:5–15

    Article  PubMed  PubMed Central  Google Scholar 

  32. Floras JS (2009) Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 54:375–385

    Article  CAS  PubMed  Google Scholar 

  33. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, Dell’Oro R, Mancia G (2011) Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 57:846–851

    Article  CAS  PubMed  Google Scholar 

  34. Sverrisdóttir YB, Mogren T, Kataoka J, Janson PO, Stener-Victorin E (2008) Is polycystic ovary syndrome associated with high sympathetic nerve activity and size at birth? Am J Physiol Endocrinol Metab 294:E576–E581

    Article  PubMed  Google Scholar 

  35. Prabhakar NR, Kumar GK (2010) Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol 174:156–161

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stadlbauer V, Stadlbauer VP, Wright GA, Banaji M, Mukhopadhya A, Mookerjee RP, Mookerjee R, Moore K, Jalan R (2008) Relationship between activation of the sympathetic nervous system and renal blood flow autoregulation in cirrhosis. Gastroenterology 134:111–119

    Article  PubMed  Google Scholar 

  37. Schauerte P, Scherlag BJ, Scherlag MA, Goli S, Jackman WM, Lazzara R (1999) Ventricular rate control during atrial fibrillation by cardiac parasympathetic nerve stimulation: a transvenous approach. J Am Coll Cardiol 34:2043–2050

    Article  CAS  PubMed  Google Scholar 

  38. Schauerte P, Scherlag BJ, Pitha J, Scherlag MA, Reynolds D, Lazzara R, Jackman WM (2000) Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation. Circulation 102(22):2774–2780

    Article  CAS  PubMed  Google Scholar 

  39. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  40. Symplicity HTN-2 Investigators (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (the symplicity HTN-2 trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  Google Scholar 

  41. Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, Haller H, Sweep FC, Diedrich A, Jordan J, Tank J (2012) Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult- to-control hypertensive patients: prospective case series. Hypertension 60:1485–1490, 58

    Article  CAS  PubMed  Google Scholar 

  42. Mahfoud F, Böhm M, Rump LC, Vonend O, Schmieder RE, Kintscher U (2013) Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension 61:e17, 59

    Article  CAS  PubMed  Google Scholar 

  43. Schlaich M, Hering D, Lambert G, Lambert E, Esler M (2013) Blood pressure and sympathetic nervous system response to renal denervation. Hypertension 61:e13

    Article  CAS  PubMed  Google Scholar 

  44. Tsioufis C, Papademetriou V, Tsiachris D, Dimitriadis K, Kasiakogias A, Kordalis A, Antonakis V, Kefala A, Thomopoulos C, Kallikazaros I, Lau EO, Stefanadis C (2014) Drug-resistant hypertensive patients responding to multielectrode renal denervation exhibit improved heart rate dynamics and reduced arrhythmia burden. J Hum Hypertens 28(10):587–593. doi:10.1038/jhh

    Article  CAS  PubMed  Google Scholar 

  45. Papademetriou V, Tsioufis CP, Sinhal A, Chew DP, Meredith IT, Malaiapan Y, Worthley MI, Worthley SG (2014) Catheter-based renal denervation for resistant hypertension: 12-month results of the EnligHTN I first-in-human study using a multielectrode ablation system. Hypertension 64(3):565–572

    Google Scholar 

  46. Papademetriou V, Rashidi AA, Tsioufis C, Doumas M (2014) Renal nerve ablation for resistant hypertension: how did we get here, present status, and future directions. Circulation 129(13):1440–1451

    Article  PubMed  Google Scholar 

  47. Papademetriou V, Tsioufis C, Doumas M (2014) Renal denervation and symplicity HTN-3: “Dubium Sapientiae Initium” (doubt is the beginning of wisdom). Circ Res 115(2):211–214. doi:10.1161/CIRCRESAHA.115.304099. No abstract available

    Google Scholar 

  48. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL (2014) SYMPLICITY HTN-3 investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401

    Article  CAS  PubMed  Google Scholar 

  49. Tellez A, Rousselle S, Palmieri T et al (2013) Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies. Transl Res 162:381–389

    Article  PubMed  Google Scholar 

  50. Atherton DS, Deep NL, Mendelsohn FO (2012) Micro-anatomy of the renal sympathetic nervous system: a human postmortem Histologic study. Clin Anat 25:628–633

    Article  PubMed  Google Scholar 

  51. Sakakura K, Ladic E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, Kolodgie FK, Virmani R, Joner M (2014) Anatomic assessment of sympathetic peri-arterial renal nerves in man. JACC 64:635–643

    Article  PubMed  Google Scholar 

  52. Tzafriri AR, Mahfoud F, John H. Keating JH, Peter M, Markham PM, Spognardi A, Wong G, Fuimaono K, Böhm M, Edelman ER (2014) Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol 64(11):1079–1087.

    Google Scholar 

  53. Henegar JR, Yongxing Zhang Y, RamaDR, Cary Hata C, Michael E, Hall ME, Hall JE (2014) Catheter-Based radiorefrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am J Hypertens 27(10):1285–1292

    Google Scholar 

  54. Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D, Linz D, Davies J, Kandzari DE, Whitbourn R, Bohm M, Melder RJ (2015) Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol 66:1766–1775

    Article  PubMed  Google Scholar 

  55. Booth LC, Nishi EE, Yao ST, Ramchandra R, Lambert GW, Schlaich MP, May CN (2015) Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertention 65:393–400

    Article  CAS  Google Scholar 

  56. Fischell TA, Vega F, Raju N, Johnson ET, Kent DK, Ragland RR, Fischell DR, Almany SL, Ghazarossian VE (2013) Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention 9:140–147

    Article  PubMed  Google Scholar 

  57. Fischell TA, Fischell DR, Ghazarossian VE, Vega F, Ebner A (2015) Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter. Cardiovasc Revasc Med 16:221–227

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilios Papademetriou MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Papademetriou, V., Doumas, M., Tsioufis, C., Raman, V.K. (2016). Renal Denervation: A Historical Perspective. In: Tsioufis, C., Schmieder, R., Mancia, G. (eds) Interventional Therapies for Secondary and Essential Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-34141-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34141-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34140-8

  • Online ISBN: 978-3-319-34141-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics