Skip to main content

Novel Drugs in the Treatment of Hypertension

  • Chapter
  • First Online:
Interventional Therapies for Secondary and Essential Hypertension

Abstract

Pharmacological therapy in combination with lifestyle changes represents the backbone of the therapeutic management of arterial hypertension (HTN) [1]. The recent European guidelines of the European Society of Hypertension and the European Society of Cardiology for the management of HTN recommend with class I and evidence level A the use of diuretics (including thiazides, chlorthalidone, and indapamide), beta-blockers, calcium antagonists, angiotensin-converting enzyme (ACE) inhibitors, and angiotensin receptor blockers (ARB) for the initiation and maintenance of antihypertensive treatment, either as monotherapy or in some combinations with each other [1]. The impressive prognostic value of blood pressure (BP) lowering in hypertensive patients by using treatment algorithms that are based on the use of these drugs has been demonstrated in multiple trials [1] including the recent Randomized Trial of Intensive versus Standard Blood-Pressure Control (SPRINT) [2]. In addition, further drugs including mineralocorticoid receptor (MR) antagonists, amiloride, and the alpha-1-blocker doxazosin are available for treatment of patients with resistant hypertension [1]. Nevertheless, there is still a need for additional novel BP-lowering drugs, e.g., in the latter patients, in individuals with special conditions (comorbidities), or in patients not responding or tolerating the available drugs. Accordingly, several novel drugs for the treatment of HTN are being currently developed either at the preclinical or clinical stage. They will be summarized in this short overview, and a summary of the compounds and their status of development is given in the Table 10.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

ACE2:

Angiotensin-converting enzyme 2

Ala:

Alamandine

Ang 1–7:

Angiotensin 1–7

Ang 1–9:

Angiotensin 1–9

Ang II:

Angiotensin II

Ang III:

Angiotensin III

Ang IV:

Angiotensin IV

ANP:

Atrial natriuretic peptide

APA:

Aminopeptidase A

APN:

Aminopeptidase N

ARB:

Angiotensin receptor blockers

ARNI:

Angiotensin receptor–neprilysin inhibitor

AT1:

Angiotensin II type 1

AT2:

Angiotensin II type 2

ATryn:

Recombinant human antithrombin

BNP:

B-type natriuretic peptide

BP:

Blood pressure

C21:

Compound 21

cGMP:

Cyclic guanosine monophosphate

CINOD:

Cyclooxygenase-inhibiting nitric oxide donator

CYP:

Cytochrome P450

DIF:

Digoxin antibody fab

DN:

Diabetic nephropathy

DβH:

Dopamine β-hydroxylase

ECE:

Endothelin-converting enzyme

EDLF:

Endogenous digitalis-like factors

ENaC:

Epithelial sodium channel

EO:

Endogenous ouabain

ET-1:

Endothelin-1

ETA:

Endothelin A

ETB:

Endothelin B

GWAS:

Genome-wide association studies

HF:

Heart failure

HFrEF:

Heart failure with reduced ejection fraction

HP-β-CD:

Hydroxypropyl-β-cyclodextrin

HTN:

Hypertension

IRAP:

Insulin-regulated membrane aminopeptidase/insulin-responsive aminopeptidase

MHS:

Milan hypertensive

MR:

Mineralocorticoid receptor

NAT2:

N-acetyltransferase 2

NEP:

Neutral endopeptidase 24.11

NHE:

Na+/H+ exchangers

NHE3:

NHE isoform 3

NO:

Nitric oxide

NPR:

Natriuretic peptide receptor

RAAS:

Renin–angiotensin–aldosterone system

rhACE2:

Recombinant human angiotensin-converting enzyme

sEH:

Soluble epoxide hydrolase

SGC:

Soluble guanylate cyclase

SHR:

Spontaneously hypertensive rats

VIP:

Vasoactive intestinal polypeptide

References

  1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31(7):1281–1357

    Article  CAS  PubMed  Google Scholar 

  2. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV et al (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373(22):2103–2116

    Article  CAS  PubMed  Google Scholar 

  3. Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803

    Article  CAS  PubMed  Google Scholar 

  4. Romero CA, Orias M, Weir MR (2015) Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 11(4):242–252

    CAS  PubMed  Google Scholar 

  5. Oparil S, Schmieder RE (2015) New approaches in the treatment of hypertension. Circ Res 116(6):1074–1095

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez Prada JA, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RA et al (2008) Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 51(5):1312–1317

    Article  CAS  PubMed  Google Scholar 

  7. Ferreira AJ, Shenoy V, Qi Y, Fraga-Silva RA, Santos RA, Katovich MJ et al (2011) Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Exp Physiol 96(3):287–294

    Article  CAS  PubMed  Google Scholar 

  8. Treml B, Neu N, Kleinsasser A, Gritsch C, Finsterwalder T, Geiger R et al (2010) Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Crit Care Med 38(2):596–601

    Article  CAS  PubMed  Google Scholar 

  9. Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J et al (2010) Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes 59(2):529–538

    Article  CAS  PubMed  Google Scholar 

  10. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M et al (2013) Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet 52(9):783–792

    Article  CAS  PubMed  Google Scholar 

  11. Kluskens LD, Nelemans SA, Rink R, de Vries L, Meter-Arkema A, Wang Y et al (2009) Angiotensin-(1-7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1-7) analog. J Pharmacol Exp Ther 328(3):849–854

    Article  CAS  PubMed  Google Scholar 

  12. Marques FD, Melo MB, Souza LE, Irigoyen MC, Sinisterra RD, de Sousa FB et al (2012) Beneficial effects of long-term administration of an oral formulation of Angiotensin-(1-7) in infarcted rats. Int J Hypertens 2012:795452

    Google Scholar 

  13. Bertagnolli M, Casali KR, De Sousa FB, Rigatto K, Becker L, Santos SH et al (2014) An orally active angiotensin-(1-7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides 51:65–73

    Article  CAS  PubMed  Google Scholar 

  14. Fraga-Silva RA, Savergnini SQ, Montecucco F, Nencioni A, Caffa I, Soncini D et al (2014) Treatment with angiotensin-(1-7) reduces inflammation in carotid atherosclerotic plaques. Thromb Haemost 111(4):736–747

    Article  CAS  PubMed  Google Scholar 

  15. Santos SH, Giani JF, Burghi V, Miquet JG, Qadri F, Braga JF et al (2014) Oral administration of angiotensin-(1-7) ameliorates type 2 diabetes in rats. J Mol Med (Berl) 92(3):255–265

    Article  CAS  Google Scholar 

  16. Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F et al (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112(8):1104–1111

    Article  CAS  PubMed  Google Scholar 

  17. Foulquier S, Steckelings UM, Unger T (2012) Impact of the AT(2) receptor agonist C21 on blood pressure and beyond. Curr Hypertens Rep 14(5):403–409

    Article  CAS  PubMed  Google Scholar 

  18. Kemp BA, Howell NL, Gildea JJ, Keller SR, Padia SH, Carey RM (2014) AT(2) receptor activation induces natriuresis and lowers blood pressure. Circ Res 115(3):388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cunha TM, Lima WG, Silva ME, Souza Santos RA, Campagnole-Santos MJ, Alzamora AC (2013) The Nonpeptide ANG-(1-7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats. Life Sci 92(4-5):266–275

    Article  CAS  PubMed  Google Scholar 

  20. Savergnini SQ, Beiman M, Lautner RQ, de Paula-Carvalho V, Allahdadi K, Pessoa DC et al (2010) Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the MAS receptor. Hypertension 56(1):112–120

    Article  CAS  PubMed  Google Scholar 

  21. Savergnini SQ, Ianzer D, Carvalho MB, Ferreira AJ, Silva GA, Marques FD et al (2013) The novel Mas agonist, CGEN-856S, attenuates isoproterenol-induced cardiac remodeling and myocardial infarction injury in rats. PLoS One 8(3):e57757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruilope LM (2008) Aldosterone, hypertension, and cardiovascular disease: an endless story. Hypertension 52(2):207–208

    Article  CAS  PubMed  Google Scholar 

  23. Hargovan M, Ferro A (2014) Aldosterone synthase inhibitors in hypertension: current status and future possibilities. JRSM Cardiovasc Dis. 2014 Feb 5;3:2048004014522440. doi:10.1177/2048004014522440. eCollection 2014.

    Google Scholar 

  24. Schumacher CD, Steele RE, Brunner HR (2013) Aldosterone synthase inhibition for the treatment of hypertension and the derived mechanistic requirements for a new therapeutic strategy. J Hypertens 31(10):2085–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Menard J, Pascoe L (2006) Can the dextroenantiomer of the aromatase inhibitor fadrozole be useful for clinical investigation of aldosterone-synthase inhibition? J Hypertens 24(6):993–997

    Article  CAS  PubMed  Google Scholar 

  26. Menard J, Gonzalez MF, Guyene TT, Bissery A (2006) Investigation of aldosterone-synthase inhibition in rats. J Hypertens 24(6):1147–1155

    Article  CAS  PubMed  Google Scholar 

  27. Lea WB, Kwak ES, Luther JM, Fowler SM, Wang Z, Ma J et al (2009) Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int 75(9):936–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu Q, Yin L, Hartmann RW (2014) Aldosterone synthase inhibitors as promising treatments for mineralocorticoid dependent cardiovascular and renal diseases. J Med Chem 57(12):5011–5022

    Article  CAS  PubMed  Google Scholar 

  29. Barfacker L, Kuhl A, Hillisch A, Grosser R, Figueroa-Perez S, Heckroth H et al (2012) Discovery of BAY 94-8862: a Nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem 7(8):1385–1403

    Article  PubMed  Google Scholar 

  30. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Barfacker L et al (2014) Finerenone, a novel selective Nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol 64(1):69–78

    Article  CAS  PubMed  Google Scholar 

  31. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H et al (2013) Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J 34(31):2453–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H et al (2015) Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 314(9):884–894

    Article  CAS  PubMed  Google Scholar 

  33. Gao J, Marc Y, Iturrioz X, Leroux V, Balavoine F, Llorens-Cortes C (2014) A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase a inhibitors. Clin Sci (Lond) 127(3):135–148

    Article  CAS  Google Scholar 

  34. Balavoine F, Azizi M, Bergerot D, De Mota N, Patouret R, Roques BP et al (2014) Randomised, double-blind, placebo-controlled, dose-escalating phase I study of QGC001, a centrally acting aminopeptidase a inhibitor prodrug. Clin Pharmacokinet 53(4):385–395

    Article  CAS  PubMed  Google Scholar 

  35. Albiston AL, Morton CJ, Ng HL, Pham V, Yeatman HR, Ye S et al (2008) Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase. FASEB J 22(12):4209–4217

    Article  CAS  PubMed  Google Scholar 

  36. Lee HWR, Chai S, Pong W, Welungoda I, Gaspari T (2014) AT4 receptor/insulin regulated aminopeptidase inhibition protects against angiotensin II induced cardic fibrosis and vascular dysfunction. J Hypertens 32(Suppl 1): e551 [abstract 33.39]

    Google Scholar 

  37. Corti R, Burnett JC Jr, Rouleau JL, Ruschitzka F, Luscher TF (2001) Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation 104(15):1856–1862

    Article  CAS  PubMed  Google Scholar 

  38. von Lueder TG, Sangaralingham SJ, Wang BH, Kompa AR, Atar D, Burnett JC Jr et al (2013) Renin-angiotensin blockade combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure. Circ Heart Fail 6(3):594–605

    Article  Google Scholar 

  39. Rademaker MT, Charles CJ, Espiner EA, Nicholls MG, Richards AM, Kosoglou T (1998) Combined neutral endopeptidase and angiotensin-converting enzyme inhibition in heart failure: role of natriuretic peptides and angiotensin II. J Cardiovasc Pharmacol 31(1):116–125

    Article  CAS  PubMed  Google Scholar 

  40. Boix F (2002) Vasopeptidase inhibitors: a bradykinin link. Lancet 359(9312):1157–1158

    Article  PubMed  Google Scholar 

  41. Campese VM, Lasseter KC, Ferrario CM, Smith WB, Ruddy MC, Grim CE et al (2001) Omapatrilat versus Lisinopril: efficacy and neurohormonal profile in salt-sensitive hypertensive patients. Hypertension 38(6):1342–1348

    Article  CAS  PubMed  Google Scholar 

  42. Vardeny O, Miller R, Solomon SD (2014) Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail 2(6):663–670

    Article  PubMed  Google Scholar 

  43. Kario K, Tamaki Y, Okino N, Gotou H, Zhu M, Zhang J (2015) LCZ696, a First-in-Class Angiotensin Receptor-Neprilysin Inhibitor: The first clinical experience in patients with severe hypertension. J Clin Hypertens (Greenwich) 18(4):308–14

    Google Scholar 

  44. Williams B, Cockcroft JR, Kario K, Zappe DH, Cardenas P, Hester A et al (2014) Rationale and study design of the prospective comparison of angiotensin receptor neprilysin inhibitor with angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study. BMJ Open 4(2):e004254

    Article  PubMed  PubMed Central  Google Scholar 

  45. Williams B, Cockcroft JR, Kario K, Zappe D, Wang Q, Guo W (2015) Principal results of the prospective comparison of angiotensin receptor neprilysin inhibitor with angiotensin receptor blocker measuring arterial stiffness in the elderly (PARAMETER) study. In: European society of cardiology 2015 congress, London; A4143

    Google Scholar 

  46. Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K (2015) Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J 36(30):1967–1973

    Article  PubMed  Google Scholar 

  47. FDA (2016) http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm453845.htm. Accessed Feb 2016

  48. EMA (2016) http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004062/smops/Positive/human_smop_000874.jsp&mid=WC0b01ac058001d127. Accessed Feb 2016

  49. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004

    Article  PubMed  Google Scholar 

  50. Seed A, Kuc RE, Maguire JJ, Hillier C, Johnston F, Essers H et al (2012) The Dual endothelin converting enzyme/neutral endopeptidase inhibitor SLV-306 (daglutril), inhibits systemic conversion of big endothelin-1 in humans. Life Sci 91(13-14):743–748

    Article  CAS  PubMed  Google Scholar 

  51. Parvanova A, van der Meer IM, Iliev I, Perna A, Gaspari F, Trevisan R et al (2013) Effect on blood pressure of combined inhibition of endothelin-converting enzyme and neutral endopeptidase with daglutril in patients with type 2 diabetes who have albuminuria: a randomised, crossover, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 1(1):19–27

    Article  CAS  PubMed  Google Scholar 

  52. Dickstein K, De Voogd HJ, Miric MP, Willenbrock R, Mitrovic V, Pacher R et al (2004) Effect of single doses of SLV306, an inhibitor of both neutral endopeptidase and endothelin-converting enzyme, on pulmonary pressures in congestive heart failure. Am J Cardiol 94(2):237–239

    Article  CAS  PubMed  Google Scholar 

  53. Thone-Reinke C, Simon K, Richter CM, Godes M, Neumayer HH, Thormahlen D et al (2004) Inhibition of both neutral endopeptidase and endothelin-converting enzyme by SLV306 reduces Proteinuria and urinary albumin excretion in diabetic rats. J Cardiovasc Pharmacol 44(Suppl 1):S76–S79

    Article  PubMed  Google Scholar 

  54. Edelson JD, Makhlina M, Silvester KR, Vengurlekar SS, Chen X, Zhang J et al (2013) In vitro and in vivo pharmacological profile of PL-3994, a novel cyclic peptide (hept-cyclo(Cys-His-Phe-d-Ala-Gly-Arg-d-Nle-Asp-Arg-Ile-Ser-Cys)-Tyr-[Arg mimetic]-NH(2)) natriuretic peptide receptor-a agonist that is resistant to neutral endopeptidase and acts as a bronchodilator. Pulm Pharmacol Ther 26(2):229–238

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Sarkar O, Brochu M, Anand-Srivastava MB (2014) Natriuretic peptide receptor-C attenuates hypertension in spontaneously hypertensive rats: role of nitroxidative stress and Gi proteins. Hypertension 63(4):846–855

    Article  CAS  PubMed  Google Scholar 

  56. Couvineau A, Laburthe M (2012) VPAC receptors: structure, molecular pharmacology and interaction with accessory proteins. Br J Pharmacol 166(1):42–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Henning RJ, Sawmiller DR (2001) Vasoactive intestinal peptide: cardiovascular effects. Cardiovasc Res 49(1):27–37

    Article  CAS  PubMed  Google Scholar 

  58. Free A, Brazg R, Matson M, Smith W, Chuck L, Georgopoulos L, Malatesta J, Arnold S, Kramer W, Strange P, Shi L, Gwynn J (2014) A phase 1, multi-center, randomized, double-blind, placebo controlled study to evaluate the safety/tolerability, pharmacokinetic and hemodynamic response following single ascending subcutaneous doses of PB1046 (vasomera™) in subjects with essential hypertension. Circulation 130:A19112

    Google Scholar 

  59. Stasch JP, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123(20):2263–2273

    Article  PubMed  PubMed Central  Google Scholar 

  60. Munzel T, Daiber A, Gori T (2011) Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation 123(19):2132–2144

    Article  PubMed  Google Scholar 

  61. Broderick KE, Alvarez L, Balasubramanian M, Belke DD, Makino A, Chan A et al (2007) Nitrosyl-cobinamide, a new and direct nitric oxide releasing drug effective in vivo. Exp Biol Med (Maywood) 232(11):1432–1440

    Article  CAS  Google Scholar 

  62. Breschi MC, Calderone V, Digiacomo M, Macchia M, Martelli A, Martinotti E et al (2006) New NO-releasing pharmacodynamic hybrids of losartan and its active metabolite: design, synthesis, and biopharmacological properties. J Med Chem 49(8):2628–2639

    Article  CAS  PubMed  Google Scholar 

  63. Li YQ, Ji H, Zhang YH, Shi WB, Meng ZK, Chen XY et al (2007) WB1106, a novel nitric oxide-releasing derivative of Telmisartan, inhibits hypertension and improves glucose metabolism in rats. Eur J Pharmacol 577(1-3):100–108

    Article  CAS  PubMed  Google Scholar 

  64. Laurent S, Schlaich M, Esler M (2012) New drugs, procedures, and devices for hypertension. Lancet 380(9841):591–600

    Article  CAS  PubMed  Google Scholar 

  65. Townsend R, Bittar N, Rosen J, Smith W, Ramsay A, Chrysant SG et al (2011) Blood pressure effects of naproxcinod in hypertensive patients. J Clin Hypertens (Greenwich) 13(5):376–384

    Article  CAS  Google Scholar 

  66. Rothermund L, Friebe A, Paul M, Koesling D, Kreutz R (2000) Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats. Br J Pharmacol 130(2):205–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sharkovska Y, Kalk P, Lawrenz B, Godes M, Hoffmann LS, Wellkisch K et al (2010) Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J Hypertens 28(8):1666–1675

    Article  CAS  PubMed  Google Scholar 

  68. Ghofrani HA, Galie N, Grimminger F, Grunig E, Humbert M, Jing ZC et al (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369(4):330–340

    Article  CAS  PubMed  Google Scholar 

  69. Rich S, McLaughlin VV (2003) Endothelin receptor blockers in cardiovascular disease. Circulation 108(18):2184–2190

    Article  CAS  PubMed  Google Scholar 

  70. Krum H, Viskoper RJ, Lacourciere Y, Budde M, Charlon V (1998) The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. Bosentan Hypertension Investigators. N Engl J Med 338(12):784–790

    Article  CAS  PubMed  Google Scholar 

  71. Bakris GL, Lindholm LH, Black HR, Krum H, Linas S, Linseman JV et al (2010) Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial. Hypertension 56(5):824–830

    Article  CAS  PubMed  Google Scholar 

  72. Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333

    Article  CAS  PubMed  Google Scholar 

  73. Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai HJ et al (2006) Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci U S A 103(49):18733–18738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spencer AG, Greasley PJ (2015) Pharmacologic inhibition of intestinal sodium uptake: a gut centric approach to sodium management. Curr Opin Nephrol Hypertens 24(5):410–416

    Article  CAS  PubMed  Google Scholar 

  75. Linz B, Hohl M, Reil JC, Bohm M, Linz D (2016) Inhibition of NHE3-mediated sodium absorption in the gut reduced cardiac end-organ damage without deteriorating renal function in obese spontaneously hypertensive rats. J Cardiovasc Pharmacol 67(3):225–231

    Article  CAS  PubMed  Google Scholar 

  76. Beliaev A, Learmonth DA, Soares-da-Silva P (2006) Synthesis and biological evaluation of novel, peripherally selective chromanyl imidazolethione-based inhibitors of dopamine beta-hydroxylase. J Med Chem 49(3):1191–1197

    Article  CAS  PubMed  Google Scholar 

  77. Almeida L, Nunes T, Costa R, Rocha JF, Vaz-da-Silva M, Soares-da-Silva P (2013) Etamicastat, a novel dopamine beta-hydroxylase inhibitor: tolerability, pharmacokinetics, and pharmacodynamics in patients with hypertension. Clin Ther 35(12):1983–1996

    Article  CAS  PubMed  Google Scholar 

  78. Helmer OM (1958) Studies on renin antibodies. Circulation 17:648–652

    Article  CAS  PubMed  Google Scholar 

  79. Brown MJ, Coltart J, Gunewardena K, Ritter JM, Auton TR, Glover JF (2004) Randomized double-blind placebo-controlled study of an angiotensin immunotherapeutic vaccine (PMD3117) in hypertensive subjects. Clin Sci (Lond) 107(2):167–173

    Article  CAS  Google Scholar 

  80. Hong F, Quan WY, Pandey R, Yi S, Chi L, Xia LZ et al (2011) A vaccine for hypertension based on peptide AngI-R: a pilot study. Int J Cardiol 148(1):76–84

    Article  PubMed  Google Scholar 

  81. Tissot AC, Maurer P, Nussberger J, Sabat R, Pfister T, Ignatenko S et al (2008) Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomised, placebo-controlled phase IIa study. Lancet 371(9615):821–827

    Article  CAS  PubMed  Google Scholar 

  82. Maurer P, Bachmann MF (2010) Immunization against angiotensins for the treatment of hypertension. Clin Immunol 134(1):89–95

    Article  CAS  PubMed  Google Scholar 

  83. Lam GK, Hopoate-Sitake M, Adair CD, Buckalew VM, Johnson DD, Lewis DF et al (2013) Digoxin antibody fragment, antigen binding (Fab), treatment of preeclampsia in women with endogenous digitalis-like factor: a secondary analysis of the DEEP trial. Am J Obstet Gynecol 209(2):119 e111–116

    Article  Google Scholar 

  84. Paidas MJ, Sibai BM, Triche EW, Frieling J, Lowry S, Group, P.-S (2013) Exploring the role of antithrombin replacement for the treatment of preeclampsia: a prospective randomized evaluation of the safety and efficacy of recombinant antithrombin in very preterm preeclampsia (PRESERVE-1). Am J Reprod Immunol 69(6):539–544

    CAS  PubMed  Google Scholar 

  85. Manunta P, Ferrandi M, Cusi D, Ferrari P, Staessen J, Bianchi G (2016) Personalized therapy of hypertension: the past and the future. Curr Hypertens Rep 18(3):24

    Article  PubMed  Google Scholar 

  86. Kreutz R, Hubner N (2002) Congenic rat strains are important tools for the genetic dissection of essential hypertension. Semin Nephrol 22(2):135–147

    Article  CAS  PubMed  Google Scholar 

  87. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W et al (2015) Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet 47(11):1282–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Staessen JA, Thijs L, Stolarz-Skrzypek K, Bacchieri A, Barton J, Espositi ED et al (2011) Main results of the ouabain and adducin for specific intervention on sodium in hypertension trial (OASIS-HT): a randomized placebo-controlled phase-2 dose-finding study of rostafuroxin. Trials 12:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N et al (2014) Gene-centric meta-analysis in 87,736 individuals of european ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet 94(3):349–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Frye SV, Arkin MR, Arrowsmith CH, Conn PJ, Glicksman MA, Hull-Ryde EA et al (2015) Tackling reproducibility in academic preclinical drug discovery. Nat Rev Drug Discov 14(11):733–734

    Article  CAS  PubMed  Google Scholar 

  91. Barrett JC, Dunham I, Birney E (2015) Using human genetics to make new medicines. Nat Rev Genet 16(10):561–562

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Kreutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kreutz, R., Abdel-Hady Algharably, E. (2016). Novel Drugs in the Treatment of Hypertension. In: Tsioufis, C., Schmieder, R., Mancia, G. (eds) Interventional Therapies for Secondary and Essential Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-34141-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34141-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34140-8

  • Online ISBN: 978-3-319-34141-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics