Skip to main content

Mitral Valve

  • Chapter
  • First Online:
Essential Echocardiography

Abstract

The mitral valve is a complex apparatus consisting of the annulus, leaflets, chordae tendineae, papillary muscle, myocardium, and its attendant chambers, the left atrium and ventricle. The function and competency of the mitral valve apparatus is intricately dependent on the structural integrity and coordination of each and all of its components. Structural or functional abnormalities contributing to mitral stenosis or mitral regurgitation and post-procedural changes can be evaluated with transesophageal echocardiography (TEE). With advancements in technology and the evolution of three-dimensional (3D) imaging, TEE is a necessary tool and modality for evaluating the mitral valve perioperatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Silverman ME, Hurst JW. The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Am Heart J. 1968;76(3):399–418.

    Article  CAS  PubMed  Google Scholar 

  2. Sidebotham DA, et al. Intraoperative transesophageal echocardiography for surgical repair of mitral regurgitation. J Am Soc Echocardiogr. 2014;27(4):345–66.

    Article  PubMed  Google Scholar 

  3. Shernan SK. Perioperative transesophageal echocardiographic evaluation of the native mitral valve. Crit Care Med. 2007;35(8 Suppl):S372–83.

    Article  PubMed  Google Scholar 

  4. Silbiger JJ, Bazaz R. Contemporary insights into the functional anatomy of the mitral valve. Am Heart J. 2009;158(6):887–95.

    Article  PubMed  Google Scholar 

  5. Mahmood F, Matyal R. A quantitative approach to the intraoperative echocardiographic assessment of the mitral valve for repair. Anesth Analg. 2015;121(1):34–58.

    Article  PubMed  Google Scholar 

  6. Salgo IS, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106(6):711–7.

    Article  PubMed  Google Scholar 

  7. Silbiger JJ. Anatomy, mechanics, and pathophysiology of the mitral annulus. Am Heart J. 2012;164(2):163–76.

    Article  PubMed  Google Scholar 

  8. Mahmood F, et al. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli. Ann Card Anaesth. 2014;17(4):279–83.

    Article  PubMed  Google Scholar 

  9. Padala M, et al. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann Thorac Surg. 2009;88(5):1499–504.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hahn RT, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26(9):921–64.

    Article  PubMed  Google Scholar 

  11. Lambert AS, et al. Improved evaluation of the location and mechanism of mitral valve regurgitation with a systematic transesophageal echocardiography examination. Anesth Analg. 1999;88(6):1205–12.

    Article  CAS  PubMed  Google Scholar 

  12. Mathew JP, et al. ASE/SCA recommendations and guidelines for continuous quality improvement in perioperative echocardiography. Anesth Analg. 2006;103(6):1416–25.

    Article  PubMed  Google Scholar 

  13. Silbiger JJ. Novel pathogenetic mechanisms and structural adaptations in ischemic mitral regurgitation. J Am Soc Echocardiogr. 2013;26(10):1107–17.

    Article  PubMed  Google Scholar 

  14. Jiang L, et al. Dynamism of the mitral annulus: a spatial and temporal analysis. J Cardiothorac Vasc Anesth. 2014;28(5):1191–7.

    Article  PubMed  Google Scholar 

  15. Mahmood F, et al. Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann Thorac Surg. 2010;90(4):1212–20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mahmood F, et al. Mitral annulus: an intraoperative echocardiographic perspective. J Cardiothorac Vasc Anesth. 2013;27(6):1355–63.

    Article  PubMed  Google Scholar 

  17. Mahmood F, et al. Intraoperative application of geometric three-dimensional mitral valve assessment package: a feasibility study. J Cardiothorac Vasc Anesth. 2008;22(2):292–8.

    Article  PubMed  Google Scholar 

  18. Owais K, et al. Three-dimensional printing of the mitral annulus using echocardiographic data: science fiction or in the operating room next door? J Cardiothorac Vasc Anesth. 2014;28(5):1393–6.

    Article  PubMed  Google Scholar 

  19. Khabbaz KR, et al. Dynamic 3-dimensional echocardiographic assessment of mitral annular geometry in patients with functional mitral regurgitation. Ann Thorac Surg. 2013;95(1):105–10.

    Article  PubMed  Google Scholar 

  20. Lee AP, et al. Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3-dimensional echocardiography: importance of annular saddle shape in the pathogenesis of mitral regurgitation. Circulation. 2013;127(7):832–41.

    Article  PubMed  Google Scholar 

  21. Connell JM, et al. Ischemic mitral regurgitation: mechanisms, intraoperative echocardiographic evaluation, and surgical considerations. Anesthesiol Clin. 2013;31(2):281–98.

    Article  PubMed  Google Scholar 

  22. Shakil O, et al. Ischemic mitral regurgitation: an intraoperative echocardiographic perspective. J Cardiothorac Vasc Anesth. 2013;27(3):573–85.

    Article  PubMed  Google Scholar 

  23. Shah PM. Current concepts in mitral valve prolapse–diagnosis and management. J Cardiol. 2010;56(2):125–33.

    Article  PubMed  Google Scholar 

  24. Wunderlich NC, Beigel R, Siegel RJ. Management of mitral stenosis using 2D and 3D echo-Doppler imaging. JACC Cardiovasc Imaging. 2013;6(11):1191–205.

    Article  PubMed  Google Scholar 

  25. Grayburn PA, et al. Multiplane transesophageal echocardiographic assessment of mitral regurgitation by Doppler color flow mapping of the vena contracta. Am J Cardiol. 1994;74(9):912–7.

    Article  CAS  PubMed  Google Scholar 

  26. Zoghbi WA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16(7):777–802.

    Article  PubMed  Google Scholar 

  27. Ashikhmina E, et al. Three-dimensional versus two-dimensional echocardiographic assessment of functional mitral regurgitation proximal isovelocity surface area. Anesth Analg. 2015;120(3):534–42.

    Article  PubMed  Google Scholar 

  28. Lambert AS. Proximal isovelocity surface area should be routinely measured in evaluating mitral regurgitation: a core review. Anesth Analg. 2007;105(4):940–3.

    Article  PubMed  Google Scholar 

  29. Longo M, et al. Usefulness of transesophageal echocardiography during open heart surgery of mitral stenosis. J Cardiovasc Surg (Torino). 2000;41(3):381–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liem Nguyen MD .

Editor information

Editors and Affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

ME mitral commissural view with color flow Doppler demonstrating two distinct jets due to a sector plane that captures the two outer edges of the jet and omitting the central portion (AVI 212 KB)

ME four-chamber view with posterior leaflet prolapse (P) (AVI 270 KB)

ME mitral commissural view of a patient with posterior leaflet prolapse (AVI 208 KB)

ME four-chamber view with anterior leaflet vegetation (AVI 10,000 KB)

330609_1_En_6_MOESM5_ESM.avi

ME LAX view of the a patient with an anterior leaflet vegetation (AVI 3,358 KB)

ME four-chamber view with CFD in a patient posterior leaflet prolapse and a corresponding jet directed away from affected leaflet (AVI 281 KB)

CFD of the mitral valve showing trace MR (1+) (AVI 10,117 KB)

CFD of the mitral valve showing mild MR (2+) (AVI 4,338 KB)

CFD of the mitral valve showing moderate MR (3+) (AVI 5,998 KB)

CFD of the mitral valve showing severe MR (4+) (AVI 3,120 KB)

ME LAX view of a patient with rheumatic mitral stenosis and a “hockey sticky” deformity (AVI 9,402 KB)

Video 6.5

ME LAX view of the a patient with an anterior leaflet vegetation (AVI 3,358 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, L., Gerstein, N. (2016). Mitral Valve. In: Maus, T., Nhieu, S., Herway, S. (eds) Essential Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-34124-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34124-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34122-4

  • Online ISBN: 978-3-319-34124-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics