Skip to main content

Giant Magnetoresistance (GMR) Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

Since its discovering in 1988, the Giant Magnetoresistance (GMR) effect has been widely studied both from the theoretical and the applications points of view. Its rapid development was initially promoted by their extensive use in the read heads of the massive data magnetic storage systems, in the digital world. Since then, novel proposals as basic solid state magnetic sensors have been continuously appearing. Due to their high sensitivity, small size and compatibility with standard CMOS technologies, they have become the preferred choice in scenarios traditionally occupied by Hall sensors. In this chapter, we analyze the main properties of GMR sensors regarding their use as magnetometers. We will deal about the physical basis, the fabrication processes and the parameters constraining their response. We will also mention about some significant application, including developments at the system level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)

    Article  Google Scholar 

  2. G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic-structures with antiferromagnetic interlayer exchange. Phys Rev B 39(7), 4828–4830 (1989)

    Article  Google Scholar 

  3. S.M. Thompson, The discovery, development and future of gmr: the nobel prize 2007. J. Phys. D Appl. Phys. 41(9), 093001 (2008)

    Article  Google Scholar 

  4. U. Hartman. (Ed.), Magnetic Multilayers and Giant Magnetoresistance: Fundamentals and Industrial Applications. Surface Sciences (Springer, Berlin, 1999)

    Google Scholar 

  5. E Hirota, H Sakakima, K Inomata, Giant Magnetoresistance Devices. Surface Sciences (Springer, Berlin, 2002)

    Google Scholar 

  6. S. Arana, N. Arana, R. Gracia, E. Castaño, High sensitivity linear position sensor developed using granular Ag-Co giant magnetoresistances. Sens. Actuators A—Phys 116–121 (2005)

    Google Scholar 

  7. C. Reig, M. Cardoso, S.E. Mukhopadhyay, Giant Magnetoresistance (GMR) Sensors. From Basis to State-of-the-Art Applications. Smart Sensors, Measurement and Instrumentation (Springer, Berlin, 2013)

    Google Scholar 

  8. P.P. Freitas, R. Ferreira, S. Cardoso, F. Cardoso, Magnetoresistive sensors. J. Phys-Condens Matter 19(16) 21 (2007)

    Google Scholar 

  9. C. Reig, D. Ramírez, F. Silva, J. Bernardo, P. Freitas, Design, fabrication, and analysis of a spin-valve based current sensor. Sens Actuators A-Phys 115(2–3), 259–266 (2004)

    Article  Google Scholar 

  10. A. Veloso, P.P. Freitas, P. Wei, N.P. Barradas, J.C. Soares, B. Almeida, J.B. Sousa, Magnetoresistance enhancement in specular, bottom-pinned, Mn83Ir17 spin valves with nano-oxide layers. Appl. Phys. Lett. 77(7), 1020–1022 (2000)

    Article  Google Scholar 

  11. C. Reig, D. Ramírez, H.H. Li, P.P. Freitas, Low-current sensing with specular spin valve structures. IEE Proc-Circ Devices Syst 152(4), 307–311 (2005)

    Article  Google Scholar 

  12. V. Peña, Z. Sefrioui, D. Arias, C. Leon, J. Santamaria, J.L. Martinez, S.G.E. te Velthuis, A. Hoffmann, Giant magnetoresistance in ferromagnet/superconductor superlattices. Phys Rev Lett 94(5) (2005)

    Google Scholar 

  13. D. Pullini, D. Busquets, A. Ruotolo, G. Innocenti, V. Amigó, Insights into pulsed electrodeposition of gmr multilayered nanowires. J. Magn. Magn. Mater. 316(2), E242–E245 (2007)

    Article  Google Scholar 

  14. D. Leitao, R. Macedo, A. Silva, D. Hoang, D. MacLaren, S. McVitie, S. Cardoso, P. Freitas, Optimization of exposure parameters for lift-off process of sub-100 features using a negative tone electron beam resist, in Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on (2012), pp. 1–6

    Google Scholar 

  15. D.C. Leitao, J.P. Amaral, S. Cardoso, C. Reig, Giant magnetoresistance (GMR) sensors. From basis to state-of-the-art applications, ch. Microfabrication techniques. Smart Sensors, Measurement and Instrumentation [7] (2013), pp. 31–46

    Google Scholar 

  16. Z. Marinho, S. Cardoso, R. Chaves, R. Ferreira, L.V. Melo, P.P. Freitas, Three dimensional magnetic flux concentrators with improved efficiency for magnetoresistive sensors, J. Appl. Phys. 109(7) (2011)

    Google Scholar 

  17. R.C. Jaeger, Introduction to microelectronic fabrication. Modular series on solid state devices (Addison-Wesley, USA, 1988)

    Google Scholar 

  18. J. Johnson, Thermal agitation of electricity in conductors. Nature 119, 50–51 (Jan–Jun 1927)

    Google Scholar 

  19. H. Nyquist, Thermal agitation of electric charge in conductors. Phys Rev, 32, 110–113 (Jul 1928)

    Google Scholar 

  20. F.N. Hooge, 1/f noise. Physica B & C 83(1), 14–23 (1976)

    Article  Google Scholar 

  21. C. Fermon, M. Pannetier-Lecoeur, Giant magnetoresistance (GMR) sensors. From basis to state-of-the-art applications, ch. Noise in GMR and TMR sensors. In Smart Sensors, Measurement and Instrumentation [7] (2013)

    Google Scholar 

  22. M. Cubells-Beltrán, C. Reig, D. Ramírez, S. Cardoso, P. Freitas, Full Wheatstone bridge spin-valve based sensors for IC currents monitoring. IEEE Sens. J. 9(12), 1756–1762 (2009)

    Article  Google Scholar 

  23. P.P. Freitas, S. Cardoso, R. Ferreira, V.C. Martins, A. Guedes, F.A. Cardoso, J. Loureiro, R. Macedo, R.C. Chaves, J. Amaral, Optimization and integration of magnetoresistive sensors. Spin 01(01), 71–91 (2011)

    Article  Google Scholar 

  24. J. Gakkestad, P. Ohlckers, L. Halbo, Compensation of sensitivity shift in piezoresistive pressure sensors using linear voltage excitation. Sens. Actuators A-Phys 49(1–2), 11–15 (1995)

    Article  Google Scholar 

  25. D.R. Muñoz, J.S. Moreno, S.C. Berga, E.C. Montero, C.R. Escrivà, A.E.N. Anton, Temperature compensation of Wheatstone bridge magnetoresistive sensors based on generalized impedance converter with input reference current. Rev. Sci. Instrum. 77(10), 6 (2006)

    Google Scholar 

  26. P. Freitas, F. Silva, N. Oliveira, L. Melo, L. Costa, N. Almeida, Spin valve sensors. Sens. Actuators, A 81(1–3), 2–8 (2000)

    Article  Google Scholar 

  27. A. De Marcellis, G. Ferri, A. D’Amico, C. Di Natale, E. Martinelli, A fully-analog lock-in amplifier with automatic phase alignment for accurate measurements of ppb gas concentrations. Sens. J. IEEE 12, 1377–1383 (2012)

    Article  Google Scholar 

  28. G.T. Ong, P.K. Chan, A power-aware chopper-stabilized instrumentation amplifier for resistive wheatstone bridge sensors. Instrum. Measure. IEEE Transac. 63, 2253–2263 (2014)

    Article  Google Scholar 

  29. C. Reig, M. Cubells-Beltrán, D. Ramírez, Giant Magnetoresistance: New Research, GMR Based Electrical Current Sensors (Nova Science Publishers, New York, 2009)

    Google Scholar 

  30. M. Vopalensky, P. Ripka, J. Kubik, M. Tondra, Improved GMR sensor biasing design. Sens. Actuators A-Phys. 110(1–3), 254–258 (2004)

    Article  Google Scholar 

  31. A. De Marcellis, M.-D. Cubells-Beltrán, C. Reig, J. Madrenas, B. Zadov, E. Paperno, S. Cardoso, P. Freitas, Quasi-digital front-ends for current measurement in integrated circuits with giant magnetoresistance technology. Circ. Devices Syst., IET, 8, 291–300 (July 2014)

    Google Scholar 

  32. W.S. Singh, B.P.C. Rao, S. Thirunavukkarasu, T. Jayakumar, Flexible GMR sensor array for magnetic flux leakage testing of steel track ropes. J. Sens. (2012)

    Google Scholar 

  33. O. Postolache, A.L. Ribeiro, H. Geirinhas Ramos, GMR array uniform eddy current probe for defect detection in conductive specimens, Measurement 46, 4369–4378 (Dec 2013)

    Google Scholar 

  34. D.A. Hall, R.S. Gaster, T. Lin, S.J. Osterfeld, S. Han, B. Murmann, S.X. Wang, GMR biosensor arrays: a system perspective. Biosens Bioelectron. 25, 2051–2057 (15 May 2010)

    Google Scholar 

  35. P. Campiglio, L. Caruso, E. Paul, A. Demonti, L. Azizi-Rogeau, L. Parkkonen, C. Fermon, M. Pannetier-Lecoeur, GMR-based sensors arrays for biomagnetic source imaging applications. IEEE Transac. Magnet. 48, 3501–3504 (Nov 2012)

    Google Scholar 

  36. D.A. Hall, R.S. Gaster, K.A.A. Makinwa, S.X. Wang, B. Murmann, A 256 pixel magnetoresistive biosensor microarray in 0.18 μm CMOS. IEEE J. Solid-State Circ. 48, 1290–1301 (May 2013)

    Google Scholar 

  37. J. Kim, J. Lee, J. Jun, M. Le, C. Cho, Integration of hall and giant magnetoresistive sensor arrays for real-time 2-D visualization of magnetic field vectors. IEEE Transac. Magnet. 48, 3708–3711 (Nov 2012)

    Google Scholar 

  38. G.Y. Tian, A. Al-Qubaa, J. Wilson, Design of an electromagnetic imaging system for weapon detection based on GMR sensor arrays. Sens. Actuators A-Phys. 174, 75–84 (Feb 2012)

    Google Scholar 

  39. H. Liu, Y.F. Zhang, Y.W. Liu, M.H. Jin, Measurement errors in the scanning of resistive sensor arrays. Sens. Actuators A: Phys. 163(1), 198–204 (2010)

    Google Scholar 

  40. R. Saxena, N. Saini, R. Bhan, Analysis of crosstalk in networked arrays of resistive sensors. Sens. J. IEEE 11, 920–924 (2011)

    Article  Google Scholar 

  41. R. Saxena, R. Bhan, A. Aggrawal, A new discrete circuit for readout of resistive sensor arrays. Sens. Actuators, A 149(1), 93–99 (2009)

    Article  Google Scholar 

  42. J. Brown, A universal low-field magnetic field sensor using GMR resistors on a semicustom BiCMOS array, ed. by G. Cameron, M. Hassoun, A. Jerdee, C. Melvin. Proceedings of the 39th Midwest Symposium on Circuits and Systems (1996), pp. 123–126

    Google Scholar 

  43. S.-J. Han, L. Xu, H. Yu, R.J. Wilson, R.L. White, N. Pourmand, S.X. Wang, CMOS integrated DNA Microarray based on GMR sensors, in 2006 International Electron Devices Meeting, International Electron Devices Meeting (2006), pp. 451–454

    Google Scholar 

  44. M.-D. Cubells-Beltrán, C. Reig, A.D. Marcellis, E. Figueras, A. Yúfera, B. Zadov, E. Paperno, S. Cardoso, P. Freitas, Monolithic integration of giant magnetoresistance (gmr) devices onto standard processed CMOS dies. Microelectron. J. 45(6), 702–707 (2014)

    Article  Google Scholar 

  45. F. Rothan, C. Condemine, B. Delaet, O. Redon, A. Giraud, A low power 16-channel fully integrated gmr-based current sensor, in ESSCIRC (ESSCIRC), 2012 Proceedings of the (2012), pp. 245–248

    Google Scholar 

  46. A. de Marcellis, C. Reig, M. Cubells, J. Madrenas, F. Cardoso, S. Cardoso, P. Freitas, Giant magnetoresistance (gmr) sensors for 0.35 μm cmos technology sub-ma current sensing. Proc. IEEE Sens. 2014, 444–447 (2014)

    Google Scholar 

  47. NVE Corporation, GMR sensor catalog, (2012)

    Google Scholar 

  48. K. Kapser, M. Weinberger, W. Granig, P. Slama, Giant Magnetoresistance (GMR) Sensors. From Basis to State-of-the-Art Applications, ch. GMR Sensors in Automotive Applications. In Smart Sensors, Measurement and Instrumentation [7] (2013)

    Google Scholar 

  49. Sensitec, Gf705 magnetoresistive magnetic field sensor (2014)

    Google Scholar 

  50. N.A. Stutzke, S.E. Russek, D.P. Pappas, M. Tondra, Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. J. Appl. Phys. 97(10) (2005)

    Google Scholar 

  51. J.P. Sebastiá, J.A. Lluch, J.R.L. Vizcano, Signal conditioning for GMR magnetic sensors applied to traffic speed monitoring. Sens. Actuators A-Phys. 137(2), 230–235 (2007)

    Article  Google Scholar 

  52. J.P. Sebastiá, J.A. Lluch, J.R.L. Vizcano, J.S. Bellon, Vibration detector based on gmr sensors. IEEE Trans. Instrum. Meas. 58(3), 707–712 (2009)

    Article  Google Scholar 

  53. S. Arana, E. Castaño, F.J. Gracia, High temperature circular position sensor based on a giant magnetoresistance nanogranular ag x co1−x alloy. IEEE Sens. J. 4(2), 221–225 (2004)

    Article  Google Scholar 

  54. A.J. López-Martn, A. Carlosena, Performance tradeoffs of three novel gmr contactless angle detectors. IEEE Sens. J. 9(3), 191–198 (2009)

    Article  Google Scholar 

  55. M.D. Michelena, R.P. del Real, H. Guerrero, Magnetic technologies for space: Cots sensors for flight applications and magnetic testing facilities for payloads. Sens. Lett. 5(1), 207–211 (2007)

    Article  Google Scholar 

  56. M.D. Michelena, W. Oelschlagel, I. Arruego, R.P. del Real, J.A.D. Mateos, J.M. Merayo, Magnetic giant magnetoresistance commercial off the shelf for space applications. J. Appl. Phys. 103(7), 07E912 (2008)

    Article  Google Scholar 

  57. M. Diaz-Michelena, Small magnetic sensors for space applications. Sensors 9(4), 2271–2288 (2009)

    Article  Google Scholar 

  58. J.P. Sebastiá, D.R. Munoz, P.J.P. de Freitas, W.J. Ku, A novel spin-valve bridge sensor for current sensing. IEEE Trans. Instrum. Meas. 53(3), 877–880 (2004)

    Article  Google Scholar 

  59. J. Pelegrí-Sebastiá, D. Ramírez-Muñoz, Safety device uses GMR sensor. EDN 48(15), 84–86 (2003)

    Google Scholar 

  60. J. Pelegrí, D. Ramírez, P.P. Freitas, Spin-valve current sensor for industrial applications. Sens. Actuators A-Phys. 105(2), 132–136 (2003)

    Article  Google Scholar 

  61. D.R. Muñoz, D.M. Pérez, J.S. Moreno, S.C. Berga, E.C. Montero, Design and experimental verification of a smart sensor to measure the energy and power consumption in a one-phase ac line. Measurement 42(3), 412–419 (2009)

    Article  Google Scholar 

  62. D. Ramírez, J. Pelegrí, GMR sensors manage batteries. Edn 44(18), 138 (1999)

    Google Scholar 

  63. M. Pannetier-Lecoeur, C. Fermon, A. de Vismes, E. Kerr, L. Vieux-Rochaz, Low noise magnetoresistive sensors for current measurement and compasses. J. Magn. Magn. Mater. 316(2), E246–E248 (2007)

    Article  Google Scholar 

  64. C. Reig, M.-D. Cubells-Beltrán, D. Ramírez, S. Cardoso, P. Freitas, Electrical isolators based on tunneling magnetoresistance technology. IEEE Trans. Magn. 44(11), 4011–4014 (2008)

    Article  Google Scholar 

  65. A. Roldán, C. Reig, M.-D. Cubells-Beltrán, J. Roldán, D. Ramírez, S. Cardoso, P. Freitas, Analytical compact modeling of GMR based current sensors: Application to power measurement at the IC level. Solid-State Electron. 54, 1606–1612 (2010)

    Article  Google Scholar 

  66. D.L. Graham, H.A. Ferreira, P.P. Freitas, Magnetoresistive-based biosensors and biochips. Trends Biotechnol. 22(9), 455–462 (2004)

    Article  Google Scholar 

  67. M. Mujika, S. Arana, E. Castaño, M. Tijero, R. Vilares, J.M. Ruano-López, A. Cruz, L. Sainz, J. Berganza, Microsystem for the immunomagnetic detection of escherichia coli o157: H7. Phys. Status Solidi A 205(6), 1478–1483 (2008)

    Article  Google Scholar 

  68. H. Ferreira, D. Graham, P. Parracho, V. Soares, P.P. Freitas, Flow velocity measurement in microchannels using magnetoresistive chips. Magnet. IEEE Transac. 40, 2652–2654 (2004)

    Article  Google Scholar 

  69. S. Mukhopadhyay, K. Chomsuwan, C. Gooneratne, S. Yamada, A novel needle-type sv-gmr sensor for biomedical applications. Sens. J. IEEE 7, 401–408 (2007)

    Article  Google Scholar 

  70. J. Amaral, S. Cardoso, P. Freitas, A. Sebastiao, Toward a system to measure action potential on mice brain slices with local magnetoresistive probes. J. Appl. Phys. 109, 07B308–07B308–3 (Apr 2011)

    Google Scholar 

Download references

Acknowledgments

At the personal level, we should give thanks to E. Figueras, J. Madrenas and A. Yúfera for their kindness regarding standard IC’s. Also thanks to A. Roldán and J. B. Roldán for their help in developing electrical models. The authors are permanently grateful for the very fruitful collaborations with the INESC-MN. Part of the work has been carried out under projects: HP2003/0123 (Ministry of Science and Technology, Spain), GV05/150 (Valencian Regional Government), ENE2008-06588-C04-04 (Ministry of Science and Innovation, Spain and European Regional Development Fund), UV-INV-AE11-40892 (Universitat de València) and NGG-229 (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Candid Reig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reig, C., Cubells-Beltrán, MD. (2017). Giant Magnetoresistance (GMR) Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics