Skip to main content

Magnetoelectric Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

Key features of magnetoelectric (ME) sensors for measuring the magnetic field, electric current and microwave power are discussed. ME sensors are shown to have advantages over semiconductor ones in the sensitivity, low price and radiation resistance. To predict the feasibility of a composite for sensor application, we propose the nomograph method based on given parameters of the composite components. The sensor sensitivity depends on the construction and the materials parameters of the ME composite and bias magnetic field. ME laminates offer opportunities for low frequency (10−2–103 Hz) detection of low magnetic fields (10−12 Tesla or below) at room temperature in a passive mode of operation. Any other magnetic sensor does not reveal such combinations of characteristics. Current sensing based on ME effect is a good choice for many applications due to galvanic isolation between the current and measuring circuit. For increasing the sensor sensitivity one needs to use the ME composite based on materials with high magnetostriction and strong piezoelectric coupling. Microwave power sensors based on composite materials have a wide frequency range up to hundreds of gigahertz, stable to significant levels of radiation, and a temperature range from 0 K to the Curie temperature. In the microwave region, it is possible to use selective properties of ME materials, that enables one to create a frequency-selective power sensor with fine-tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.I. Bichurin, D. Viehland (eds.) Magnetoelectricity in Composites (Pan Stanford Publishing, Singapore, 2012), 273 p

    Google Scholar 

  2. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  3. B.D.H. Tellegen, Philips Res. Rep. 3, 81 (1948)

    MathSciNet  Google Scholar 

  4. J.Y. Zhai, J.F. Li, S.X. Dong, D. Viehland, M.I. Bichurin, J. Appl. Phys. 100, 124509 (2006)

    Article  Google Scholar 

  5. M.I. Bichurin, V.M. Petrov, R.V. Petrov, Y.V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev, Ferroelectrics 280, 199 (2002)

    Article  Google Scholar 

  6. Y. Wang, J. Li, D. Viehland, Mater. Today 17, 269 (2014)

    Article  Google Scholar 

  7. H. Schmid, Ferroelectrics 162, 317 (1994)

    Article  Google Scholar 

  8. J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)

    Google Scholar 

  9. J. van den Boomgaard, A.M.J.G. van Run, J. van Suchtelen, Ferroelectrics 14, 727 (1976)

    Article  Google Scholar 

  10. M.I. Bichurin, D. Viehland, G. Srinivasan, J. Electroceram. 19, 243–250 (2007)

    Article  Google Scholar 

  11. D.N. Astrov, Sov. Phys. JETP 13, 729 (1961)

    Google Scholar 

  12. S. Dong, J. Zhai, F. Bai, J.F. Li, D. Viehland, Appl. Phys. Lett. 87, 062502 (2005)

    Article  Google Scholar 

  13. C.-W. Nan, G. Liu, Y. Lin, H. Chen, Phys. Rev. Lett. 94, 197203 (2005)

    Article  Google Scholar 

  14. S. Dong, J. Zhai, J. Li, D. Viehland, Appl. Phys. Lett. 89, 252904 (2006)

    Article  Google Scholar 

  15. M.I. Bichurin, V.M. Petrov, S. Priya, Magnetoelectric Multiferroic Composites (Chap. 12), in Ferroelectrics—Physical Effects, ed. by M. Lallart (InTech, 2011), p. 277

    Google Scholar 

  16. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, J. Am. Ceram. Sos. 91, 351 (2008)

    Article  Google Scholar 

  17. G. Harshe G, Magnetoelectric effect in piezoelectric-magnetostrictive composites. PhD thesis, The Pennsylvania State University, College Park, PA, 1991

    Google Scholar 

  18. M.I. Bichurin, V.M. Petrov, in Modeling of Magnetoelectric Effects in Composites, vol. 201. Springer Series in Materials Science (Springer, New York, 2014), 108p

    Google Scholar 

  19. M.I. Bichurin, V.M. Petrov, R.V. Petrov, Y.V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev, Ferroelectrics 280, 365 (2002)

    Google Scholar 

  20. J. Gao, Y. Wang, M. Li, Y. Shen, J. Li, D. Viehland, Mater. Lett. 85, 84–87 (2012)

    Article  Google Scholar 

  21. J. Clarke, R.H. Koch, The impact of high-temperature superconductivity on SQUID magnetometers. Science 242, 217–223 (1988)

    Article  Google Scholar 

  22. Y.J. Wang, J.Q. Gao, M.H. Li, Y. Shen, D. Hasanyan, J.F. Li, D. Viehland, Phil. Trans. R. Soc. A 372, 20120455 (2014)

    Article  Google Scholar 

  23. Y. Wang, D. Gray, J. Gao, D. Berry, M. Li, J. Li, D. Viehland, H. Luo, J. Alloy. Compd. 519, 1–3 (2012)

    Article  Google Scholar 

  24. Y. Wang, D. Gray, D. Berry, J. Li, D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 859–862 (2012)

    Article  Google Scholar 

  25. Y. Wang, J. Gao, M. Li, D. Hasanyan, Y. Shen, J. Li, D. Viehland, H. Luo, Appl. Phys. Lett. 101, 022903 (2012)

    Article  Google Scholar 

  26. X. Zhuang, S. Saez, M. Lam Chok Sing, C. Cordier, C. Dolabdjian, J. Li, D. Viehland, S.K. Mandal, G Sreenivasulu, G. Srinivasan, Sens. Lett. 10, 961 (2012)

    Google Scholar 

  27. R. Jahns, H. Greve, E. Woltermann, E. Quandt, R. Knöchel, Sens. Actuators, A 183, 16 (2012)

    Article  Google Scholar 

  28. T. Onuta, Y. Wang, S.E. Lofland, I. Takeuchi, Adv. Mater. (2014). doi:10.1002/adma.201402974

  29. S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knochel, B. Wagner, Sens. Actuators, A 189, 321 (2013)

    Article  Google Scholar 

  30. J. Petrie, D. Viehland, D. Gray, S. Mandal, G. Sreenivasulu, G. Srinivasan, A.S. Edelstein, J. Appl. Phys. 111, 07C714 (2012)

    Google Scholar 

  31. J.R. Petrie, J. Fine, S. Mandal, G. Sreenivasulu, G. Srinivasan, A.S. Edelstein, Appl. Phys. Lett. 99, 043504 (2011)

    Article  Google Scholar 

  32. Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li, D. Viehland, Adv. Mater. 23, 4111 (2013)

    Article  Google Scholar 

  33. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, D. Meyners, Nat. Mater. 11, 523 (2012)

    Article  Google Scholar 

  34. C. Kirchhof, M. Krantz, I. Teliban et al., Appl. Phys. Lett. 102, 232905 (2013)

    Article  Google Scholar 

  35. A. Piorra, R. Jahns, I. Teliban et al., Appl. Phys. Lett. 103, 032902 (2013)

    Article  Google Scholar 

  36. G. Sreenivasulu, V.M. Petrov, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Phys. Rev. B 86, 214405 (2012)

    Article  Google Scholar 

  37. T.T. Nguyen, F. Bouillault, L. Daniel, X. Mininger, Finite element modeling of magnetic field sensors based on nonlinear magnetoelectric effect. J. Appl. Phys. 109, 084904 (2011)

    Google Scholar 

  38. M.I. Bichurin, V.M. Petrov, R.V. Petrov, Y.V. Kiliba, F.I. Bukashev, A.Y. Smirnov, D.N. Eliseev, Ferroelectrics 280, 365 (2002)

    Google Scholar 

  39. S.X. Dong, J.F. Li, D. Viehland, J. Appl. Phys. 96, 3382 (2004)

    Article  Google Scholar 

  40. S.X. Dong, J.F. Li, D. Viehland, Appl. Phys. Lett. 85, 2307 (2004)

    Article  Google Scholar 

  41. Shuxiang Dong, John G. Bai, Junyi Zhai et al., Appl. Phys. Lett. 86, 182506 (2005)

    Article  Google Scholar 

  42. S. Zhang, C.M. Leung, W. Kuang, S.W. Or, S.L. Ho. J. Appl. Phys. 113, 17C733 (2013)

    Google Scholar 

  43. S.X. Dong, J.G. Bai, J.Y. Zhai, J.F. Li, G.Q. Lu, D. Viehland, S.J. Zhang, T.R. Shrout, Appl. Phys. Lett. 86, 182506 (2005)

    Article  Google Scholar 

  44. Jitao Zhang, Ping Li, Yumei Wen, Wei He et al., Rev. Sci. Instrum. 83, 115001 (2012)

    Article  Google Scholar 

  45. R.V. Petrov, N.V. Yegerev, M.I. Bichurin, S.R. Aleksić, Current sensor based on magnetoelectric effect, in Proceedings of XVIII-th International Symposium on Electrical Apparatus and Technologies SIELA 2014, , Bourgas, Bulgaria, 29–31 May 2014

    Google Scholar 

  46. I.N. Solovyev, A.N. Solovyev, R.V. Petrov, M.I. Bichurin, A.N. Vučković, N.B. Raičević. Sensitivity of magnetoelectric current sensor, in Proceedings of 11th International Conference on Applied Electromagnetics—ΠEC 2013, Niš, Serbia, 1–4 Sept 2013, pp. 109–110

    Google Scholar 

  47. R.V. Petrov, I.N. Solovyev, A.N. Soloviev, M.I. Bichurin, Magnetoelectic current sensor, in PIERS Proceedings, Stockholm, Sweden, 12–15 Aug 2013, pp. 105–108

    Google Scholar 

  48. M. I. Bichurin, V.M. Petrov, Modeling of magnetoelectric interaction in magnetostrictive-piezoelectric composites, in Advances in Condensed Matter Physics (2012)

    Google Scholar 

  49. E.L. Ginzton, Microwave Measurements (McGraw-Hill, Inc., London, 1957)

    Google Scholar 

  50. A. Fantom, Radio Frequency and Microwave Power Measurement, IET (1990), 278p

    Google Scholar 

  51. M.I. Bichurin, S.V. Averkin, G.A. Semenov, The magnetoelectric resonator. Patent 2450427RU

    Google Scholar 

  52. A.S. Tatarenko, M.I. Bichurin, Electrically tunable resonator for microwave applications based on hexaferrite-piezoelectrc layered structure. Am. J. Condens. Matter Phys. 2, #5 (2012)

    Google Scholar 

  53. M.I. Bichurin, V.M. Petrov, G.A. Semenov, Magnetoelectric material for components of radio-electronic devices. Patent 2363074RU

    Google Scholar 

  54. M.I. Bichurin, S.N. Ivanov, Selective microwave power detector. Patent 2451942RU

    Google Scholar 

  55. M.I. Bichurin, A.S. Tatarenko, V. Kiliba Yu, Magnetoelectric microwave power sensor. Patent 147272RU

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza I. Bichurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bichurin, M.I., Petrov, V.M., Petrov, R.V., Tatarenko, A.S. (2017). Magnetoelectric Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics