Skip to main content

Parallel Fluxgate Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

This chapter gives a brief overview of parallel fluxgate development, technology and performance. Starting from theoretical background through derivation of fluxgate gating curves, the fluxgate sensor is explained on its typical examples, including sensors with rod-, ring- and race-track core. The effects of geometry, construction and magnetic material treatment on parallel fluxgate noise are discussed in detail–noise levels as low as 2 pTrms·Hz−0.5 are possible with state-of-the-art devices. Basic applications of fluxgate magnetometers are given and a quick overview of commercial devices is presented, concluded with recent advances in bulk, miniature, digital and aerospace devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Aschenbrenner, G. Goubau, Eine Anordnung zur Registrierung rascher magnetischer Störungen. Hochfrequenztechnik und Elektroakustik 47(6), 177–181 (1936)

    Google Scholar 

  2. D.I. Gordon, R.H. Lundsten, R. Chiarodo, Factors affecting the sensitivity of gamma-level ring-core magnetometers. IEEE Trans. Magn. 1(4), 330–337 (1965)

    Article  Google Scholar 

  3. F Primdahl, The fluxgate mechanism, part I: the gating curves of parallel and orthogonal fluxgates. IEEE Trans. Magn. 6(2), 376–383 (1970)

    Google Scholar 

  4. J.R. Burger, The theoretical output of a ring core fluxgate sensor. IEEE Trans. Magn. 8(4), 791–796 (1972)

    Google Scholar 

  5. A.L. Geiler et al., A quantitative model for the nonlinear response of fluxgate magnetometers. J. Appl. Phys. 99(8), 08B316 (2006)

    Article  Google Scholar 

  6. J.L.M.J. van Bree, J.A. Poulis, F.N. Hooge, Barkhausen noise in fluxgate magnetometers. Appl. Sci. Res. 29(1), 59–68 (1974)

    Article  Google Scholar 

  7. M. Tejedor, B. Hernando, M.L. Sánchez, Reversible permeability for perpendicularly superposed induction in metallic glasses for fluxgate sensors. J. Magn. Magn. Mater. 133(1), 338–341 (1994)

    Article  Google Scholar 

  8. H. Bittel, L. Storm, Rauschen. Eine Einfuehrung zum Verstaendnis elektrischer Schwankungserscheinungen. (Springer, Berlin, 1971) (1)

    Google Scholar 

  9. C. Hinnrichs et al., Dependence of sensitivity and noise of fluxgate sensors on racetrack geometry. IEEE Trans. Magn. 37(4), 1983–1985 (2001)

    Google Scholar 

  10. D. Scouten, Sensor noise in low-level flux-gate magnetometers. IEEE Trans. Magn. 8(2), 223–231 (1972)

    Article  Google Scholar 

  11. M. Butta et al., Influence of magnetostriction of NiFe electroplated film on the noise of fluxgate. IEEE Trans. Magn. 50(11), 1–4 (2014)

    Google Scholar 

  12. P. Ripka, M. Pribil, M. Butta, Fluxgate Offset Study. IEEE Trans. Magn. 50(11), 1–4 (2014)

    Article  Google Scholar 

  13. F. Primdahl et al., Demagnetising factor and noise in the fluxgate ring-core sensor. J. Phys. E: Sci. Instrum. 22(12), 1004 (1989)

    Article  Google Scholar 

  14. R.H. Koch, J.R. Rozen, Low-noise flux-gate magnetic-field sensors using ring-and rod-core geometries. Appl. Phys. Lett. 78(13), 1897–1899 (2001)

    Article  Google Scholar 

  15. C. Moldovanu et al., The noise of the Vacquier type sensors referred to changes of the sensor geometrical dimensions. Sens. Actuators A 81(1), 197–199 (2000)

    Article  MathSciNet  Google Scholar 

  16. O.V. Nielsen et al., Analysis of a fluxgate magnetometer based on metallic glass sensors. Meas. Sci. Technol. 2(5), 435 (1991)

    Article  Google Scholar 

  17. P. Ripka, Race-track fluxgate sensors. Sens. Actuators, A 37, 417–421 (1993)

    Article  Google Scholar 

  18. H.U. Auster et al., in The THEMIS fluxgate magnetometer. The THEMIS Mission (Springer, New York, 2009), pp. 235–264

    Google Scholar 

  19. O. Dezuari et al., Printed circuit board integrated fluxgate sensor. Sens. Actuators, A 81(1), 200–203 (2000)

    Article  Google Scholar 

  20. J. Kubik, M. Janosek, P. Ripka, Low-power fluxgate sensor signal processing using gated differential integrator. Sens. Lett. 5(1), 149–152 (2007)

    Google Scholar 

  21. O. Zorlu, P. Kejik, W. Teppan, A closed core microfluxgate sensor with cascaded planar FeNi rings. Sens. Actuators A 162(2), 241–247 (2010)

    Article  Google Scholar 

  22. J. Lei, C. Lei, Y. Zhou, Micro fluxgate sensor using solenoid coils fabricated by MEMS technology. Meas. Sci. Rev. 12(6), 286–289 (2012)

    Article  Google Scholar 

  23. E. Delevoye et al., Microfluxgate sensors for high frequency and low power applications. Sens. Actuators A 145, 271–277 (2008)

    Article  Google Scholar 

  24. P. Butvin et al., Field annealed closed-path fluxgate sensors made of metallic-glass ribbons. Sens. Actuators A Phys. 184, 72–77 (2012)

    Google Scholar 

  25. M. Janosek et al., Effects of core dimensions and manufacturing procedure on fluxgate noise. Acta Phys. Pol. A 126(1), 104–105 (2014)

    Article  Google Scholar 

  26. M.H. Acuna, Fluxgate magnetometers for outer planets exploration. IEEE Trans. Magn. 10, 519–523 (1974)

    Article  Google Scholar 

  27. K. Shirae, Noise in amorphous magnetic materials. IEEE Trans. Magn. 20(5), 1299–1301 (1984)

    Article  Google Scholar 

  28. D. Rühmer et al., Vector fluxgate magnetometer for high operation temperatures up to 250 °C. Sens. Actuators A Phys. 228, 118–124 (2015)

    Article  Google Scholar 

  29. A. Matsuoka et al., Development of fluxgate magnetometers and applications to the space science missions. Sci. Instrum. Sound. Rocket Satell. (2012)

    Google Scholar 

  30. O.V. Nielsen et al., Development, construction and analysis of the “Oersted” fluxgate magnetometer. Meas. Sci. Technol. 6(8), 1099 (1995)

    Google Scholar 

  31. R. Piel, F. Ludwig, M. Schilling, Noise optimization of racetrack fluxgate sensors. Sens. Lett. 7(3), 317–321 (2009)

    Article  Google Scholar 

  32. F. Primdahl et al., The short-circuited fluxgate output current. J. Phys. E Sci. Instrum. 22(6), 349 (1989)

    Article  Google Scholar 

  33. B. Andò et al., in Experimental investigations on the spatial resolution in RTD-fluxgates. IEEE Instrumentation and Measurement Technology Conference, 2009 (IEEE 2009), pp. 1542–1545

    Google Scholar 

  34. D. High, Sensor Signal Conditioning IC for Closed-Loop Magnetic Current Sensor (Texas Instruments, 2006)

    Google Scholar 

  35. P. Ripka, W.G. Hurley, Excitation efficiency of fluxgate sensors. Sens. Actuators A 129(1), 75–79 (2006)

    Article  Google Scholar 

  36. J. Piil-Henriksen et al., Digital detection and feedback fluxgate magnetometer. Meas. Sci. Technol. 7(6), 897 (1996)

    Article  Google Scholar 

  37. W. Magnes et al., in Magnetometer Front End ASIC. Proceedings of 2nd International Workshop on Analog and Mixed Signal Integrated Circuits for Space Applications, (Noordwijk, 2008) pp. 99–106

    Google Scholar 

  38. C.T. Russell et al., The magnetospheric multiscale magnetometers. Space Sci. Rev. 1–68 (2014)

    Google Scholar 

  39. D.T. Germain-Jones, Post-war developments in geophysical instrumentation for oil prospecting. J. Sci. Instrum. 34(1), 1 (1957)

    Article  Google Scholar 

  40. W.L. Webb, Aircraft navigation instruments. Electr. Eng. 70(5), 384–389 (1951)

    Article  Google Scholar 

  41. S.F. Singer, in Measurements of the Earth’s Magnetic Field from a Satellite Vehicle. Scientific uses of earth satellites (Univ. Michigan Press, Ann Arbor,1956), pp. 215–233

    Google Scholar 

  42. M.H. Acuna et al., in The MAGSAT Vector Magnetometer: a Precision Fluxgate Magnetometer for the Measurement of the Geomagnetic Field. NASA Technical Memorandum (1978)

    Google Scholar 

  43. T.J. Sabaka et al., CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int. 200(3), 1596–1626 (2015)

    Article  Google Scholar 

  44. Y.H. Pei, H.G. YEO, in UXO Survey Using Vector Magnetic Gradiometer on Autonomous Underwater Vehicle. OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global and Local Challenges (2009), pp. 1–8

    Google Scholar 

  45. F. Ludwig et al., Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets. J. Magn. Magn. Mater. 293(1), 690–695 (2005)

    Article  Google Scholar 

  46. J. Tomek et al., Application of fluxgate gradiometer in magnetopneumography. Sens. Actuators A 132(1), 214–217 (2006)

    Article  Google Scholar 

  47. T. Kudo, S. Kuribara, Y. in Takahashi, Wide-range ac/dc Earth Leakage Current Sensor Using Fluxgate with Self-excitation System. IEEE Sensors (2011), pp. 512–515

    Google Scholar 

  48. Y. Nishio, F. Tohyama, N. Onishi, The sensor temperature characteristics of a fluxgate magnetometer by a wide-range temperature test for a Mercury exploration satellite. Meas. Sci. Technol. 18(8), 2721 (2007)

    Article  Google Scholar 

  49. J. Jeng, J. Chen, C. Lu, Enhancement in sensitivity using multiple harmonics for miniature fluxgates. IEEE Trans. Magn. 48(11), 3696–3699 (2012)

    Article  Google Scholar 

  50. J.M.G. Merayo, P. Brauer, F. Primdahl, Triaxial fluxgate gradiometer of high stability and linearity. Sens. Actuators A 120(1), 71–77 (2005)

    Article  Google Scholar 

  51. G. Sulzberger et al., in Demonstration of the Real-time Tracking Gradiometer for Buried Mine Hunting while Operating from a Small Unmanned Underwater Vehicle. IEEE Oceans (2006)

    Google Scholar 

  52. Y. Sui et al., Compact fluxgate magnetic full-tensor gradiometer with spherical feedback coil. Rev. Sci. Instrum. 85(1), 014701 (2014)

    Article  Google Scholar 

  53. M. Kashmiri et al., in A 200kS/s 13.5 b Integrated-fluxgate Differential-magnetic-to-digital Converter with an Oversampling Compensation Loop for Contactless Current Sensing. IEEE International Solid-State Circuits Conference-(ISSCC), 2015 (IEEE, 2015), pp. 1–3

    Google Scholar 

  54. Texas Instruments Inc., DRV425—Fluxgate Magnetic-Field Sensor (2015), http://www.ti.com/lit/ds/symlink/drv425.pdf

  55. A. Cerman et al., in Self-compensating Excitation of Fluxgate Sensors for Space Magnetometers. IEEE Instrumentation and Measurement Technology Conference Proceedings, 2008 (IEEE, 2008), pp. 2059–2064

    Google Scholar 

  56. K.-H. Glassmeier et al., RPC-MAG the fluxgate magnetometer in the ROSETTA plasma consortium. Space Sci. Rev. 128(1–4), 649–670 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Janosek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janosek, M. (2017). Parallel Fluxgate Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics