Skip to main content

Microfabricated Optically-Pumped Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

Optical magnetometers (OPMs), implemented by optical interrogation of alkali-atoms contained in a vapor cell, are among the most sensitive detectors for magnetic fields. Due to the fact that weak magnetic fields are ubiquitous in our world, high-sensitive magnetometers are demanded in a wide range of scientific and practical applications. Here we review some of the highly miniaturized OPMs recently developed using silicon microfabrication techniques. This approach opens a number of attractive advantages, besides further miniaturization, such as integration of different sensing technologies within the same silicon platform and cost-efficient manufacturing of a large number of sensors with tight tolerances at potentially low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Manufacturer is stated for technical clarity and does not imply endorsement by NIST. Products from other manufacturers may perform as well or better. Contribution of NIST an agency of the U.S. government; not subject to copyright.

References

  1. J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801 (2002)

    Article  Google Scholar 

  2. H.B. Dang, A.C. Maloof, M.V. Romalis, Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010)

    Article  Google Scholar 

  3. I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003)

    Article  Google Scholar 

  4. O. Alem, T.H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff et al., Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 60, 4797 (2015)

    Article  Google Scholar 

  5. S. Knappe, T.H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, L. Trahms, Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications. Appl. Phys. Lett. 97, 133703 (2010)

    Article  Google Scholar 

  6. T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe, Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981–990 (2012)

    Article  Google Scholar 

  7. J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, L. Moi, Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment. J. Opt. Soc. Am. B-Opt. Phys. 24, 2357–2362 (2007)

    Article  Google Scholar 

  8. G. Bison, N. Castagna, A. Hofer, P. Knowles, J.L. Schenker, M. Kasprzak et al., A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 95, 173701 (2009)

    Article  Google Scholar 

  9. C. Johnson, P.D.D. Schwindt, M. Weisend, Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer. Appl. Phys. Lett. 97, 243703 (2010)

    Article  Google Scholar 

  10. M.N. Livanov, Recording of human magnetic fields. Dokl. Akad. Nauk SSSR 238, 253–256 (1977)

    Google Scholar 

  11. V.K. Shah, R.T. Wakai, A compact, high performance atomic magnetometer for biomedical applications. Phys. Med. Biol. 58, 8153 (2013)

    Article  Google Scholar 

  12. S. Taue, Y. Sugihara, T. Kobayashi, S. Ichihara, K. Ishikawa, N. Mizutani, Development of a highly sensitive optically pumped atomic magnetometer for biomagnetic field measurements: a phantom study Magnetics. IEEE Trans. 46, 3635–3638 (2010)

    Google Scholar 

  13. R. Wyllie, M. Kauer, R.T. Wakai, T.G. Walker, Optical magnetometer array for fetal magnetocardiography. Opt. Lett. 37, 2247–2249 (2012)

    Article  Google Scholar 

  14. H. Xia, A.B.-A. Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer, Appl. Phys. Lett. 89, 211104–211103 (2006)

    Google Scholar 

  15. M. Díaz-Michelena, Small magnetic sensors for space applications. Sensors 9, 2271–2288 (2009)

    Article  Google Scholar 

  16. I. Mateos, B. Patton, E. Zhivun, D. Budker, D. Wurm, J. Ramos-Castro, Noise characterization of an atomic magnetometer at sub-millihertz frequencies. Sens. Actuators, A 224, 147–155 (2015)

    Article  Google Scholar 

  17. P.A. Bottomley, NMR imaging techniques and applications: a review. Rev. Sci. Instrum. 53, 1319–1337 (1982)

    Article  Google Scholar 

  18. P.C. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973)

    Article  Google Scholar 

  19. D.C. Jiles, Review of magnetic methods for nondestructive evaluation. NDT International 21, 311–319 (1988)

    Article  Google Scholar 

  20. D. Cohen, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972)

    Article  Google Scholar 

  21. S.R. Steinhubl, E.D. Muse, E.J. Topol, The emerging field of mobile health. Sci. Trans. Med. 7, 283rv283 (2015)

    Google Scholar 

  22. W. Happer, Optical pumping. Rev. Mod. Phys. 44, 169–249 (1972)

    Article  Google Scholar 

  23. V. Shah, S. Knappe, P.D.D. Schwindt, J. Kitching, Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photonics 1, 649–652 (2007)

    Article  Google Scholar 

  24. S.J. Smullin, I.M. Savukov, G. Vasilakis, R.K. Ghosh, M. Romalis, Low-noise high-density alkali-metal scalar magnetometer. Phys. Rev. A 80, 033420 (2009)

    Article  Google Scholar 

  25. I.M. Savukov, S.J. Seltzer, M.V. Romalis, K.L. Sauer, Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005)

    Article  Google Scholar 

  26. M.P. Ledbetter, I.M. Savukov, V.M. Acosta, D. Budker, M.V. Romalis, Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A 77, 033408 (2008)

    Article  Google Scholar 

  27. D.A. Steck, Rubidium 87 D line data, revision 2.1.4 (2010)

    Google Scholar 

  28. V. Shah, G. Vasilakis, M.V. Romalis, High bandwidth atomic magnetometery with continuous quantum nondemolition measurements. Phys. Rev. Lett. 104, 013601 (2010)

    Article  Google Scholar 

  29. B. Patton, O.O. Versolato, D.C. Hovde, E. Corsini, J.M. Higbie, D. Budker, A remotely interrogated all-optical 87Rb magnetometer. Appl. Phys. Lett. 101, 083502 (2012)

    Article  Google Scholar 

  30. J. Belfi, G. Bevilacqua, V. Biancalana, Y. Dancheva, L. Moi, All optical sensor for automated magnetometry based on coherent population trapping. J. Opt. Soc. Am. B 24, 1482–1489 (2007)

    Article  Google Scholar 

  31. W.E. Bell, A.L. Bloom, Optically driven spin precession. Phys. Rev. Lett. 6, 280 (1961)

    Article  Google Scholar 

  32. V. Acosta, M.P. Ledbetter, S.M. Rochester, D. Budker, D.F.J. Kimball, D.C. Hovde et al., Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys. Rev. A 73, 053404 (2006)

    Article  Google Scholar 

  33. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Experimental-method for observation of Rf transitions and laser beat resonances in oriented Na vapor. Nuovo Cimento Della Societa Italiana Di Fisica B-Gen. Phys. Relativ. Astron. Math. Phys. Methods 36, 5–20 (1976)

    Google Scholar 

  34. C. Affolderbach, A. Nagel, S. Knappe, C. Jung, D. Wiedenmann, R. Wynands, Nonlinear spectroscopy with a vertical-cavity surface-emitting laser (VCSEL). Appl. Phys. B 70, 407–413 (2000)

    Article  Google Scholar 

  35. V. Gerginov, V. Shah, S. Knappe, L. Hollberg, J. Kitching, Atomic-based stabilization for laser-pumped atomic clocks. Opt. Lett. 31, 1851–1853 (2006)

    Article  Google Scholar 

  36. F. Gruet, F. Vecchio, C. Affolderbach, Y. Pétremand, N.F. de Rooij, T. Maeder et al., A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules. Opt. Lasers Eng. 51, 1023–1027 (2013)

    Article  Google Scholar 

  37. S. Knappe, H.G. Robinson, L. Hollberg, Microfabricated saturated absorption spectroscopy with alkali atoms. Opt. Express 15, 6293–6299 (2007)

    Article  Google Scholar 

  38. V. Venkatraman, H. Shea, F. Vecchio, T. Maeder, P. Ryser, in LTCC Integrated Miniature Rb Discharge Lamp Module for Stable Optical Pumping in Miniature Atomic Clocks and Magnetometers. 2012 IEEE 18th International Symposium for Design and Technology in Electronic Packaging (SIITME), pp. 111–114

    Google Scholar 

  39. V. Venkatraman, S. Kang, C. Affolderbach, H. Shea, G. Mileti, Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source. Appl. Phys. Lett. 104, 054104 (2014)

    Article  Google Scholar 

  40. D.K. Serkland, K.M. Geib, G.M. Peake, R. Lutwak, A. Rashed, M. Varghese et al., in VCSELs for Atomic Sensors, eds. by K.D. Choquette, J.K. Guenter, Proceedings of SPIE 6484: Vertical-Cavity Surface-Emitting Lasers XI (2007)

    Google Scholar 

  41. S. Knappe, V. Velichansky, H.G. Robinson, J. Kitching, L. Hollberg, Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers. Rev. Sci. Instrum. 74, 3142–3145 (2003)

    Article  Google Scholar 

  42. G. Wallis, D. Pomerantz, Field assisted glass-metal sealing. J. Appl. Phys. 40, 3946–3949 (1969)

    Article  Google Scholar 

  43. Y. Pétremand, C. Affolderbach, R. Straessle, M. Pellaton, D. Briand, G. Mileti et al., Microfabricated rubidium vapour cell with a thick glass core for small-scale atomic clock applications. J. Micromech. Microeng. 22, 025013 (2012)

    Article  Google Scholar 

  44. S. Knappe, V. Gerginov, P.D.D. Schwindt, V. Shah, H. Robinson, L. Hollberg et al., Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt. Lett. 30, 2351–2353 (2005)

    Article  Google Scholar 

  45. L.-A. Liew, S. Knappe, J. Moreland, H.G. Robinson, L. Hollberg, J. Kitching, Microfabricated alkali atom vapor cells. Appl. Phys. Lett. 84, 2694–2696 (2004)

    Article  Google Scholar 

  46. F. Gong, Y.Y. Jau, K. Jensen, W. Happer, Electrolytic fabrication of atomic clock cells. Rev. Sci. Instrum. 77, 076101 (2006)

    Article  Google Scholar 

  47. L.-A. Liew, J. Moreland, V. Gerginov, Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide. Appl. Phys. Lett. 90, 114106 (2007)

    Article  Google Scholar 

  48. S. Woetzel, V. Schultze, R. IJsselsteijn, T. Schulz, S. Anders, R. Stolz et al., Microfabricated atomic vapor cell arrays for magnetic field measurements, Rev. Sci. Instrum. 82, 033111 (2001)

    Google Scholar 

  49. J. Haesler, L. Balet, J.A. Porchet, T. Overstolz, J. Pierer, R.J. James, et al., in The Integrated Swiss Miniature Atomic Clock. European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), 2013 Joint, pp. 579–581 (2013)

    Google Scholar 

  50. M. Hasegawa, R.K. Chutani, C. Gorecki, R. Boudot, P. Dziuban, V. Giordano et al., Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks. Sens. Actuators, A 167, 594–601 (2011)

    Article  Google Scholar 

  51. L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J.C. Beugnot, J. Dziuban et al., New approach of fabrication and dispensing of micromachined cesium vapor cell. MOEMS 7, 033013–033016 (2008)

    Article  Google Scholar 

  52. S.-K. Lee, M.V. Romalis, Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry. J. Appl. Phys. 103, 084904 (2008)

    Article  Google Scholar 

  53. W.C. Griffith, S. Knappe, J. Kitching, Atomic magnetometer with sub-5-femtotesla sensitivity using a microfabricated vapor cell. Opt. Express 18, 27167–27172 (2010)

    Article  Google Scholar 

  54. M.A. Perez, U. Nguyen, S. Knappe, E.A. Donley, J. Kitching, A.M. Shkel, Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS. Sens. Actuators, A 154, 295–303 (2009)

    Article  Google Scholar 

  55. M.A. Perez, S. Knappe, J. Kitching, 45° silicon etching for chip scale atomic devices (unpublished)

    Google Scholar 

  56. E.J. Eklund, A.M. Shkel, S. Knappe, E.A. Donley, J. Kitching, Glass-blown spherical microcells for chip-scale atomic devices. Sens. Actuators, A 143, 175–180 (2008)

    Article  Google Scholar 

  57. D. Senkal, M.J. Ahamed, S. Askari, A.M. Shkel, MEMS micro-glassblowing paradigm for wafer-level fabrication of fused silica wineglass gyroscopes. Procedia Eng. 87, 1489–1492 (2014)

    Article  Google Scholar 

  58. N. Dural, M.V. Romalis, Gallium phosphide as a new material for anodically bonded atomic sensors. APL Mat. 2, 086101 (2014)

    Article  Google Scholar 

  59. S. Woetzel, E. Kessler, M. Diegel, V. Schultze, H.-G. Meyer, Low-temperature anodic bonding using thin films of lithium-niobate-phosphate glass. J. Micromech. Microeng. 24, 095001 (2014)

    Article  Google Scholar 

  60. R. Straessle, M. Pellaton, C. Affolderbach, Y. Petremand, D. Briand, G. Mileti et al., Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks. J. Appl. Phys. 113, 064501 (2013)

    Article  Google Scholar 

  61. M.V. Balabas, T. Karaulanov, M.P. Ledbetter, D. Budker, Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010)

    Article  Google Scholar 

  62. M.A. Bouchiat, J. Brossel, Relaxation of optically pumped Rb atoms on paraffin-coated walls. Phys. Rev. 147, 41–54 (1966)

    Article  Google Scholar 

  63. S.J. Seltzer, M.V. Romalis, High-temperature alkali vapor cells with antirelaxation surface coatings. J. Appl. Phys. 106, 114905 (2009)

    Article  Google Scholar 

  64. Y.W. Yi, H.G. Robinson, S. Knappe, J.E. Maclennan, C.D. Jones, C. Zhu et al., Method for characterizing self-assembled monolayers as antirelaxation wall coatings for alkali vapor cells. J. Appl. Phys. 104, 023534 (2008)

    Article  Google Scholar 

  65. R. Straessle, M. Pellaton, C. Affolderbach, Y. Pétremand, D. Briand, G. Mileti et al., Microfabricated alkali vapor cell with anti-relaxation wall coating. Appl. Phys. Lett. 105, 043502 (2014)

    Article  Google Scholar 

  66. G. Vasilakis, H. Shen, K. Jensen, M. Balabas, D. Salart, B. Chen et al., Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement. Nat. Phys. 11, 389–392 (2015)

    Article  Google Scholar 

  67. H. Korth, K. Strohbehn, F. Tajeda, A. Andreou, S. McVeig, J. Kitching et al., Chip-scale absolute scalar magnetometer for space applications. Johns Hopkins APL Tech. Dig. 28, 248–249 (2010)

    Google Scholar 

  68. R. Mhaskar, S. Knappe, J. Kitching, in Low-Frequency Characterization of Mems-Based Portable Atomic Magnetometer, Frequency Control Symposium (FCS), 2010 IEEE International, pp. 376–379

    Google Scholar 

  69. P.D.D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L.-A. Liew et al., Chip-scale atomic magnetometer. Appl. Phys. Lett. 85, 6409–6411 (2004)

    Article  Google Scholar 

  70. P.D.D. Schwindt, B. Lindseth, S. Knappe, V. Shah, J. Kitching, A chip-scale atomic magnetometer with improved sensitivity using the Mx technique. Appl. Phys. Lett. 90, 081102 (2007)

    Article  Google Scholar 

  71. R. Jiménez-Martínez, W.C. Griffith, S. Knappe, J. Kitching, M. Prouty, High-bandwidth optical magnetometer. J. Opt. Soc. Am. B 29, 3398–3403 (2012)

    Article  Google Scholar 

  72. J. Preusser, S. Knappe, V. Gerginov, J. Kitching, in A Microfabricated Photonic Magnetometer. 2009 European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference CLEO Europe—EQEC, pp. 1–1

    Google Scholar 

  73. M.J. Mescher, R. Lutwak, M. Varghese, in An Ultra-Low-Power Physics Package for a Chip-Scale Atomic Clock, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005 Digest of Technical Papers TRANSDUCERS ‘05, Vol. 311, pp. 311–316 (2005)

    Google Scholar 

  74. R. Mhaskar, S. Knappe, J. Kitching, A low-power, high-sensitivity micromachined optical magnetometer. Appl. Phys. Lett. 101, 241105 (2012)

    Article  Google Scholar 

  75. M.A. Perez, S. Knappe, J. Kitching, in MEMS Techniques for the Parallel Fabrication of Chip Scale Atomic Devices. 2010 IEEE Sensors, pp. 2155–2158 (2010)

    Google Scholar 

  76. A. Bloom, Principles of operation of the rubidium vapor magnetometer. Appl. Opt. 1, 61–68 (1962)

    Article  Google Scholar 

  77. W.F. Stuart, M.J. Usher, S.H. Hall, Rubidium self-oscillating magnetometer for earth’s field measurements. Nature 202, 76 (1964)

    Article  Google Scholar 

  78. J. Dupont-Roc, S. Haroche, C. Cohen-Tannoudji, Detection of very weak magnetic fields (10−9 gauss) by Rb zero-field level crossing resonances. Phys. Lett. A 28, 628–639 (1969)

    Article  Google Scholar 

  79. H.J. Lee, J.H. Shim, H.S. Moon, K. Kim, Flat-response spin-exchange relaxation free atomic magnetometer under negative feedback. Opt. Express 22, 19887–19894 (2014)

    Article  Google Scholar 

  80. S.J. Seltzer, M.V. Romalis, Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl. Phys. Lett. 85, 4804–4806 (2004)

    Article  Google Scholar 

  81. R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D.K. Serkland, G.M. Peake, in The MAC—A Miniature Atomic Clock. Joint Meeting of the IEEE International Frequency Control Symposium and the Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Vancouver, Canada, pp. 752–757 (2005)

    Google Scholar 

  82. M. Larsen, M. Bulatowicz, in Nuclear Magnetic Resonance Gyroscope: For DARPA’s Micro-technology for Positioning, Navigation and Timing Program. 2012 IEEE International on Frequency Control Symposium (FCS), pp. 1–5 (2012)

    Google Scholar 

  83. J. Kitching, S. Knappe, P.D.D. Schwindt, V. Shah, L. Hollberg, L. Liew, J. Moreland, in Power Dissipation in Vertically Integrated Chip-Scale Atomic Clocks. Proceedings of the 2004 IEEE International Frequency Control Symposium, pp. 781–784 (2004)

    Google Scholar 

  84. B. Lindseth, P.D.D. Schwindt, J. Kitching, D. Fischer, V. Shusterman, Non-Contact Measurement of Cardiac Electromagnetic Field in Mice Using a Microfabricated Atomic Magnetometer. Proceedings of 2007 Conference on Computers in Cardiology (2007)

    Google Scholar 

  85. A. Pollinger, M. Ellmeier, W. Magnes, C. Hagen, W. Baumjohann, E. Leitgeb et al., in Enable the Inherent Omni-Directionality of an Absolute Coupled Dark State Magnetometer for e.g. Scientific Space Applications. 2012 IEEE International on Instrumentation and Measurement Technology Conference (I2MTC), pp. 33–36 (2012)

    Google Scholar 

  86. W. Magnes, R. Lammegger, A. Pollinger, M. Ellmeier, C. Hagen, I. Jernej et al., in Space Qualification of a New Scalar Magnetometer. Geophysical Research Abstracts. EGU 2013-9600-2011

    Google Scholar 

  87. Z.D. Grujić, A. Weis, Atomic magnetic resonance induced by amplitude-, frequency-, or polarization-modulated light. Phys. Rev. A 88, 012508 (2013)

    Article  Google Scholar 

  88. R. Jiménez-Martínez, W.C. Griffith, W. Ying-Ju, S. Knappe, J. Kitching, K. Smith et al., Sensitivity comparison of Mx and frequency-modulated bell-bloom Cs magnetometers in a microfabricated cell, instrumentation and measurement. IEEE Trans. 59, 372–378 (2010)

    Google Scholar 

  89. V. Schultze, R. Ijsselsteijn, T. Scholtes, S. Woetzel, H.-G. Meyer, Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer. Opt. Express 20, 14201–14212 (2012)

    Article  Google Scholar 

  90. W. Happer, H. Tang, Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys. Rev. Lett. 31, 273 (1973)

    Article  Google Scholar 

  91. M.P. Ledbetter, I.M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching et al., Zero-field remote detection of NMR with a microfabricated atomic magnetometer. Proc. Nat. Acad. Sci. USA 105, 2286–2290 (2008)

    Article  Google Scholar 

  92. C.N. Johnson, P.D.D. Schwindt, M. Weisend, Multi-sensor magnetoencephalography with atomic magnetometers. Phys. Med. Biol. 58, 6065–6077 (2013)

    Article  Google Scholar 

  93. M.V. Romalis, H.B. Dang, Atomic magnetometers for materials characterization. Mater. Today 14, 258–262 (2011)

    Article  Google Scholar 

  94. V. Shah, M.V. Romalis, Spin-exchange relaxation-free magnetometry using elliptically polarized light. Phys. Rev. A 80, 013416 (2009)

    Article  Google Scholar 

  95. R. Jiménez-Martínez, S. Knappe, J. Kitching, An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening. Rev. Sci. Instrum. 85, 045124 (2014)

    Article  Google Scholar 

  96. P.D.D. Schwindt, A. Colombo, T. Carter, Y.-Y Jau, C.W. Berry, J. McKay et al., in Development of an Optically Pumped Atomic Magnetometer Array for Magnetoencephalography. 2015 Joint Conference of the IEEE International Frequency Control Symposium & European Frequency and Time Forum, Denver (2015)

    Google Scholar 

  97. K. Kim, S. Begus, H. Xia, S.-K. Lee, V. Jazbinsek, Z. Trontelj et al., Multi-channel atomic magnetometer for magnetoencephalography: a configuration study. NeuroImage 89, 143–151 (2014)

    Article  Google Scholar 

  98. E.A. Donley, J.L. Long, T.C. Liebisch, E.R. Hodby, T.A. Fisher, J. Kitching, Nuclear quadrupole resonances in compact vapor cells: the crossover between the NMR and the nuclear quadrupole resonance interaction regimes. Phys. Rev. A 79, 013420 (2009)

    Article  Google Scholar 

  99. R. Jiménez-Martínez, D.J. Kennedy, M. Rosenbluh, E.A. Donley, S. Knappe, S.J. Seltzer et al., Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nat Commun 5, 3908 (2014)

    Article  Google Scholar 

  100. T.G. Walker, W. Happer, Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629–642 (1997)

    Article  Google Scholar 

  101. E.A. Donley, in Nuclear Magnetic Resonance Gyroscopes. 2010 IEEE Sensors, pp. 17–22 (2010)

    Google Scholar 

  102. J. Rutkowski, W. Fourcault, F. Bertrand, U. Rossini, S. Getin, O. Lartigue et al., in Towards a Miniature Atomic Scalar Magnetometer Using Liquid Crystal Polarization Rotator. The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII. pp. 705–708 (2013)

    Google Scholar 

  103. M.-C. Corsi, E. Labyt, W. Fourcault, C. Gobbo, F. Bertrand, F. Alcouffe et al., Detecting Mcg Signals from a Phantom with a 4He Magnetometer (Biomag, Halifax, Canada, 2014)

    Google Scholar 

  104. M.P. Ledbetter, C.W. Crawford, A. Pines, D.E. Wemmer, S. Knappe, J. Kitching et al., Optical detection of NMR J-spectra at zero magnetic field. J. Magn. Reson. 199, 25–29 (2009)

    Article  Google Scholar 

  105. T. Theis, P. Ganssle, G. Kervern, S. Knappe, J. Kitching, M.P. Ledbetter et al., Parahydrogen-enhanced zero-field nuclear magnetic resonance. Nat. Phys. 7, 571–575 (2011)

    Article  Google Scholar 

  106. T. Scholtes, V. Schultze, R. Ijsselsteijn, S. Woetzel, H.G. Meyer, Light-narrowed optically pumped Mx magnetometer with a miniaturized Cs cell. Phys. Rev. A 84, 043416 (2011)

    Article  Google Scholar 

  107. H. Clevenson, M.E. Trusheim, C. Teale, T. Schroder, D. Braje, D. Englund, Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide. Nat. Phys. 11, 393–397 (2015)

    Article  Google Scholar 

  108. D.D. Awschalom, J.R. Rozen, M.B. Ketchen, W.J. Gallagher, A.W. Kleinsasser, R.L. Sandstrom et al., Low-noise modular microsusceptometer using nearly quantum limited dc SQUIDs. Appl. Phys. Lett. 53, 2108–2110 (1988)

    Article  Google Scholar 

  109. D. Drung, S. Bechstein, K.-P. Franke, M. Scheiner, T. Schurig, Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning. IEEE Trans. Appl. Supercond. 11, 880–883 (2001)

    Article  Google Scholar 

  110. K. Fang, V.M. Acosta, C. Santori, Z. Huang, K.M. Itoh, H. Watanabe et al., High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. Phys. Rev. Lett. 110, 130802 (2013)

    Article  Google Scholar 

  111. M.I. Faley, U. Poppe, R.E. Dunin-Borkowski, M. Schiek, F. Boers, H. Chocholacs et al., High-Tc DC SQUIDs for Magnetoencephalography. Appl. Supercond. IEEE Trans. 23, 1600705 (2013)

    Article  Google Scholar 

  112. J. Gallop, SQUIDs: some limits to measurement. Supercond. Sci. Technol. 16, 1575 (2003)

    Article  Google Scholar 

  113. M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr, Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304, 1648–1650 (2004)

    Article  Google Scholar 

  114. S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knöchel et al., Highly sensitive wafer-level packaged MEMS magnetic field sensor based on magnetoelectric composites. Sens. Actuators, A 189, 321–327 (2013)

    Article  Google Scholar 

  115. Y. Wang, J. Gao, M. Li, D. Hasanyan, Y. Shen, J. Li et al., Ultralow equivalent magnetic noise in a magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. Appl. Phys. Lett. 101, 022903 (2012)

    Article  Google Scholar 

  116. D. Robbes, Highly sensitive magnetometers—a review. Sens. Actuators, A 129, 86–93 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

R. Jiménez-Martínez acknowledges support from the ICFO-NEST Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svenja Knappe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiménez-Martínez, R., Knappe, S. (2017). Microfabricated Optically-Pumped Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics