Skip to main content

Spin Exchange Relaxation Free (SERF) Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

A little more than a decade ago spin-exchange relaxation free (SERF) magnetometers set a new record of magnetic field sensitivity surpassing cryogenic SQUIDs. Since then a lot of progress has been made in design, commercialization, and development of novel applications of the SERF magnetometers. In addition, the operation of the SERF magnetometer was extended beyond the SERF regime resulting in the discovery of ultra-high sensitivity high frequency and scalar magnetometers. This chapter will cover some basic principles of SERF and high-density SERF-like magnetometers in the regimes when spin-exchange collisions affect the line-width of the magnetometers. Various topics will be covered: the SERF operation, the role of spin-exchange collisions, fundamental and technical noises in SERF and other high-density magnetometers, light shifts, optical pumping. The formalism of density matrix equations will be briefly described with some illustrations. At some conditions, Bloch equations can also provide adequate treatment of spin dynamics, so this topic is also briefly covered. Some applications, such as magnetoencephalography and magnetic resonance imaging (MRI), of SERF, high-frequency, and scalar magnetometers will be discussed. The number of applications will grow in the future, especially when high-sensitivity SERF magnetometers become commercially available and their operation becomes simple and user-friendly. Finally, it is anticipated that in the near future many applications developed with SQUIDs will be gradually replaced with those based on SERF and other ultra-sensitive atomic magnetometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422, 596 (2003)

    Article  Google Scholar 

  2. H. Xia, A. Ben-Amar Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006)

    Article  Google Scholar 

  3. K. Johnson, P.D.D. Schwindt, M. Weisend, Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer. Appl. Phys. Lett. 97, 243703 (2010)

    Article  Google Scholar 

  4. V. Shah, R.T. Wakai, A compact, high performance atomic magnetometer for biomedical applications. Phys. Med. Biol. 58, 8153–8161 (2013)

    Article  Google Scholar 

  5. I.M. Savukov, S.J. Seltzer, M.V. Romalis, Detection of NMR signals with a radio-frequency atomic magnetometer. JMR 185, 214 (2007)

    Article  Google Scholar 

  6. I.M. Savukov, S.J. Seltzer, M.V. Romalis, K.L. Sauer, Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005)

    Article  Google Scholar 

  7. E. Harel, L. SchrÓ§der, S. Xu, Annu. Rev. Anal. Chem. 1, 133 (2008)

    Article  Google Scholar 

  8. G. Bison, R. Wynands, A. Weis, Opt. Express 11, 904–909 (2003)

    Article  Google Scholar 

  9. B. Patton, A.W. Brown, R. Slocum, E.J. Smith, in Ch. 15, Space Magnetometry, ed by D. Budker, D.F.J. Kimball. Optical Magnetometry (Cambridge University Press, Cambridge, 2013), pp. 285–302

    Google Scholar 

  10. J. Allred, R. Lyman, T. Kornack, M. Romalis, A high-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801 (2002)

    Article  Google Scholar 

  11. S.J. Smullin, I.M. Savukov, G. Vasilakis, R.K. Ghosh, M.V. Romalis, A low-noise high-density alkali-metal scalar magnetometer. Phys. Rev. A 80, 033420 (2009)

    Article  Google Scholar 

  12. W. Happer, H. Tang, Phys. Rev. Lett. 31, 273 (1973)

    Article  Google Scholar 

  13. H.B. Dang, A.C. Maloof, M.V. Romalis, Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010)

    Article  Google Scholar 

  14. P.D.D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, Chip-scale atomic magnetometer. Appl. Phys. Lett. 85, 6409 (2004)

    Article  Google Scholar 

  15. T.W. Kornack, S.J. Smullin, S.K. Lee, M.V. Romalis, Appl. Phys. Lett. 90, 223501 (2007)

    Article  Google Scholar 

  16. I. Savukov, T. Karaulanov, M. Boshier, Ultra-sensitive high-density Rb-87 radio-frequency magnetometer. Appl. Phys. Lett. 104, 023504 (2014)

    Article  Google Scholar 

  17. T.G. Walker, W. Happer, Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629–642 (1997)

    Article  Google Scholar 

  18. S. Kadlecek, L.W. Anderson, T. Walker, Measurement of potassium-potassium spin relaxation cross sections. Nucl. Instrum. Meth. Phys. Res. A 402, 208–211 (1998)

    Article  Google Scholar 

  19. M.P. Ledbetter, I.M. Savukov, V.M. Acosta, D. Budker, M.V. Romalis, Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A 77, 033408 (2008)

    Article  Google Scholar 

  20. M.P. Ledbetter, I.M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D.J. Michalak, S. Xu, A. Pines, Zero-field remote detection of NMR with a microfabricated atomic magnetometer. Proc. Natl. Acad. Sci. USA 105, 2286 (2008)

    Google Scholar 

  21. S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, J. Kitching, Microfabricated atomic clocks and magnetometers. J. Opt. A Pure Appl. Opt. 8, S318–S322 (2006)

    Google Scholar 

  22. V. Shah, S. Knappe, P.D.D. Schwindt, J. Kitching, Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photonics 1(11), 649–652 (2007)

    Article  Google Scholar 

  23. W.C. Griffith, S. Knappe, J. Kitching, Opt. Express 18, 27167 (2010)

    Article  Google Scholar 

  24. V. Shah, M.V. Romalis, Spin-exchange relaxation-free magnetometry using elliptically polarized light. Phys. Rev. A 80, 013416 (2009)

    Article  Google Scholar 

  25. Twinleaf, [Online]. Available: http://www.twinleaf.com/

  26. I.M. Savukov, M.V. Romalis, Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields. Phys. Rev. A 71(2), 023405 (2005)

    Article  Google Scholar 

  27. S. Appelt, A. Ben-Amar Baranga, A.R. Young,. H.W. Young, Light narrowing of rubidium magnetic-resonance lines in high-pressure optical-pumping cells. Phys. Rev. A 59, 2078–2084 (1999)

    Google Scholar 

  28. S.-K. Lee, K. Sauer, S.J. Seltzer, O. Alem, M.V. Romalis, Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance. Appl. Phys. Lett. 89(21), 214106 (2006)

    Article  Google Scholar 

  29. G. Breit, I.I. Rabi, Measurement of nuclear spin. Phys. Rev. 38(11), 2082 (1931)

    Article  Google Scholar 

  30. W. Happer, W.A. van Wijngaarden, An optical pumping primer. Hyperfine Interact. 38(1), 435–470 (1987)

    Article  Google Scholar 

  31. W. Happer, A.C. Tam, Effect of rapid spin exchange on the magneticresonance spectrum of alkali vapors. Phys. Rev. A 16(5), 1877–1891 (1977)

    Article  Google Scholar 

  32. W. Happer, Optical pumping. Rev. Mod. Phys. 44, 169–250 (1972)

    Article  Google Scholar 

  33. A. Appelt, B.-A. Baranga, C.J. Erickson, M.V. Romalis, A.R. Young, W. Happer, Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A 1412–1439(2), 58 (1998)

    Google Scholar 

  34. I. Savukov, Gradient-echo 3D imaging of Rb polarization in fiber-coupled atomic magnetometer. JMR 256, 9–13 (2015)

    Article  Google Scholar 

  35. S.J. Seltzer, M.V. Romalis, J. Appl. Phys. 106, 114905 (2009)

    Article  Google Scholar 

  36. V. Shah, S. Knappe, P.D.D. Schwindt, J. Kitching, Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photonics 1, 649–652 (2007)

    Article  Google Scholar 

  37. I. Savukov, T. Karaulanov, Multi-flux-transformer MRI detection with an atomic magnetometer. JMR 249, 49–52 (2014)

    Article  Google Scholar 

  38. D. Sheng, S. Li, N. Dural, M.V. Romalis, Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett. 110, 160802 (2013)

    Article  Google Scholar 

  39. S.J. Seltzer, M.V. Romalis, Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Appl. Phys. Lett. 85(20), 4804 (2004)

    Article  Google Scholar 

  40. I.M. Savukov, V.S. Zotev, P.L. Volegov, M.A. Espy, A.N. Matlashov, J.J. Gomez, R.H.J. Kraus, MRI with an atomic magnetometer suitable for practical imaging applications. JMR 199, 188–191 (2009)

    Article  Google Scholar 

  41. I.M. Savukov, M.V. Romalis, NMR detection with an atomic magnetometer. Phys. Rev. Lett. 94, 123001 (2005)

    Article  Google Scholar 

  42. S. Xu, S. Rochester, V.V. Yashchuk, M. Donaldson, D. Budker, Rev. Sci. Instrum. 77, 083106 (2006)

    Article  Google Scholar 

  43. D. Cohen, Magnetoecephalography: evidence of magnetic field produced by alpha- rhythm current. Science 161, 784–786 (1968)

    Article  Google Scholar 

  44. D. Cohen, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175, 664–666 (1972)

    Article  Google Scholar 

  45. T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, S. Knappe, Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981 (2012)

    Article  Google Scholar 

  46. V.S. Zotev, A.N. Matlashov, P.L. Volegov, I.M. Savukov, M.A. Espy, J.C. Mosher, J.J. Gomez, R.H.J. Kraus, Microtesla MRI of the human brain combined with MEG. JMR 194, 115–120 (2008)

    Article  Google Scholar 

  47. A. Macovski, S. Conolly, Novel approaches to low-cost MRI. Magn. Reson. Med. 30(2), 221–230 (2005)

    Article  Google Scholar 

  48. I. Savukov, T. Karaulanov, Anatomical MRI with an atomic magnetometer. JMR 231, 39–45 (2013)

    Article  Google Scholar 

  49. I. Savukov, T. Karaulanov, Magnetic-resonance imaging of the human brain with an atomic magnetometer. Appl. Phys. Lett. 103, 043703 (2013)

    Article  Google Scholar 

  50. I.B. Khriplovich, L.S.K. Khriplovich, CP Violation Without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules (Springer, Berlin, 1997)

    Google Scholar 

  51. J.M. Brown, S.J. Smullin, T.W. Kornack, M.V. Romalis, New limit on lorentz-and CPT-violating neutron spin interactions. Phys. Rev. Lett. 105, 151604 (2010)

    Article  Google Scholar 

  52. M. Smiciklas, J.M. Brown, L.W. Cheuk, S.J. Smullin, M.V. Romalis, New test of local lorentz invariance using a 21Ne–Rb–K comagnetometer. Phys. Rev. Lett. 107, 171604 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Mykhaylovich Savukov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savukov, I.M. (2017). Spin Exchange Relaxation Free (SERF) Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics