Skip to main content

Nonlinear Magneto-Optical Rotation Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

Nonlinear magneto-optical rotation (NMOR) is the nonlinear contribution to the overall magneto-optical rotation (Faraday) signal. It yields signals that are dependent on the light and magnetic-field intensities. The later dependence enables precision magnetometry of very weak fields (relaxation-rate limited). The effect may also be investigated with the modulated light (frequency and/or amplitude modulation) to allow accurate measurements of non-zero magnetic fields. The main advantages of the NMOR magnetometry are: technical simplicity, high accuracy and wide dynamic range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using unmodulated light.

  2. 2.

    We label the states as \( \left| {J,m_{J}} \right. \)〉.

  3. 3.

    In general, the evolution frequency \( \omega_{coh} \) is given by \( \omega_{coh} = {\Delta}m\omega_{L} \).

  4. 4.

    Neglecting optical pumping of atoms by the probe light, the NMOR-signal amplitude scales linearly with the number of probe-light photons (the signal is \( S = I_{pr} \sin^{2} \varphi \)), while the noise/uncertainty is proportional \( \sqrt {I_{pr} } \).

  5. 5.

    It is typically assumed that the background field is produced by distant sources, so that change of the magnetic field between two magnetometers is negligible.

  6. 6.

    The magnetic-field inhomogeneity causes broadening of the observed NMOR resonance and hence deterioration of the magnetometric sensitivity of the device.

  7. 7.

    While, in general, intensity of light can be modulated by varying the diode-laser current, such modulation requires changing the current in a broad range. The current modulation would also introduce frequency modulation of light in a range strongly exceeding the width of optical transition light operates at. This disables the possibility of decoupling of one modulation type from the other but also complicates the stabilization of (mean) wavelength of light, introducing instabilities of the recorded NMOR signals.

  8. 8.

    If \( \varphi_{0} = 0 \), than \( S \propto I_{1} = I_{0} \sin^{2} \varphi (t) \). Thus, the signals for rotations in opposite directions are indistinguishable and the modulation of light polarization at \( 2\omega_{L} \) observed in the high-field NMOR results in the signal modulation at \( 4\omega_{L} \).

References

  1. M. Faraday, On the magnetization of light, and the illumination of magnetic lines of force. Philos. Trans. R. Soc. Lond. 1, 104–123 (1846)

    Google Scholar 

  2. D. Macaluso, O. Corbino, Sopra una nuova azione che la luce subisce attraversando alcuni vapori metallici in un campo magnetico. Nuovo Cimento 8, 257–258 (1898)

    Google Scholar 

  3. D. Macaluso, O.M. Corbino, L. Magri, Sulla relazione tra il fenomeno di Zeemann e la rotazione magnetica anomala del piano di polarizzazione della luce. Nuovo Cimento 9, 384–389 (1899)

    Google Scholar 

  4. D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, A. Weis, Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002)

    Article  Google Scholar 

  5. E. Verdet, Recherches sur les proprietes optiques developpees dans les corps transparents par laction du magnetisme. Ann. Chim. Phys. 41, 370–412 (1854)

    Google Scholar 

  6. L. Sun, S. Jiang, J.R. Marciante, Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of-32 rad/(Tm). Opt. Express 18, 12191–12196 (2010)

    Article  Google Scholar 

  7. S. Li, P. Vachaspati, D. Sheng, N. Dural, M.V. Romalis, Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell. Phys. Rev. A 84, 061403(R) (2011)

    Google Scholar 

  8. D. Sheng, S. Li, N. Dural, M.V. Romalis, Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett. 110, 160802 (2013)

    Article  Google Scholar 

  9. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floch, R. Le Naour, Small Faraday rotation measurement with a Fabry-Perot cavity. Appl. Phys. Lett. 66, 3546 (1995)

    Article  Google Scholar 

  10. C. Cohen-Tannoudji, A. Kastler, Optical pumping, in Progress in Optics, vol V, ed. by E. Wolf, (Elsevier, North Holland, 1966), p. 1

    Google Scholar 

  11. G.W. Series, Optical pumping and related topics, in Quantum Optics, the 1969 Scottisch Universities Summer School, ed. by S.M. Kay, A. Maitland (Academic Press, London, 1970), p. 395

    Google Scholar 

  12. A. Corney, Atomic and Laser Spectroscopy (Oxford University Presss, Oxford, 1977)

    Google Scholar 

  13. W. Gawlik, J. Kowalski, R. Neumann, F. Träger, Observation of the electric hexadecapole moment of free Na atoms in a forward scattering experiement. Opt. Commun. 12, 400 (1974)

    Article  Google Scholar 

  14. W. Bennett, Hole burning effects in a He-Ne optical maser. Phys. Rev. 126, 580 (1962)

    Article  Google Scholar 

  15. W. Gawlik, S. Pustelny, Nonlinear Faraday effect and its applications, in New Trends in Quantum Coherence, ed. by R. Drampyan (Nova, New York, 2009), p. 47

    Google Scholar 

  16. D. Budker, D.F. Kimbal Rochester (eds.), Optical Magnetometry (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  17. D. Budker, V. Yashchuk, M. Zolotorev, Nonlinear Magneto-optic effects with ultranarrow widths. Phys. Rev. Lett. 81, 5788 (1998)

    Article  Google Scholar 

  18. W.E. Bell, A.L. Bloom, Optically driven spin precession. Phys. Rev. Lett. 6, 280–281 (1961)

    Article  Google Scholar 

  19. S. Pustelny, M. Koczwara, Ł. Cincio, W. Gawlik, Tailoring quantum superpositions with linearly polarized amplitude-modulated light. Phys. Rev. A 83, 043832 (2011)

    Article  Google Scholar 

  20. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, Nonlinear magneto-optical rotation via alignment-to-orientation conversion. Phys. Rev. Lett. 85, 2088 (2000)

    Article  Google Scholar 

  21. D.F. Jackson Kimball, S. Pustelny, V.V. Yashchuk, D. Budker, Optical magnetometry with modulated light, in Optical magnetometry, ed. by D. Budker, F.D.J. Kimball (Cambridge University Press, Cambridge, 2013), pp. 104–124

    Google Scholar 

  22. Z.D. Grujić, A. Weis, Atomic magnetic resonance induced by amplitude-, frequency-, or polarization-modulated light. Phys. Rev. A 88, 012508 (2013)

    Google Scholar 

  23. E. Breschi, Z.D. Gruijć, P. Knowles, A. Weis, Magneto-optical spectroscopy with polarization-modulated light. Phys. Rev. A 88, 022506 (2013)

    Article  Google Scholar 

  24. Y.P. Malakyan, S.M. Rochester, D. Budker, D.F. Kimball, V.V. Yashchuk, Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition. Phys. Rev. A 69, 013817 (2004)

    Article  Google Scholar 

  25. W. Gawlik, L. Krzemień, S. Pustelny, D. Sangla, J. Zachorowski, M. Graf, A. Sushkov, D. Budker, Nonlinear magneto-optical rotation with amplitude-modulated light. Appl. Phys. Lett. 88, 131108 (2006)

    Article  Google Scholar 

  26. C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  27. M. Auzinsh, M. Auzinsh, D. Budker, D.F. Kimball, S.M. Rochester, J.E. Stalnaker, A.O. Sushkov, V.V. Yashchuk, Phys. Rev. Lett. 93, 173002 (2004)

    Article  Google Scholar 

  28. A.F. Molish, B.P. Oehry, Radiation Trapping in Atomic Vapours (Oxford University Press, Oxford, 1998)

    Google Scholar 

  29. J.P. Wittke, R.H. Dicke, Phys. Rev. 103, 620 (1956)

    Article  Google Scholar 

  30. W. Gawlik, Nonstationary effects in velocity-selective optical pumping. Phys. Rev. A 34, 3760 (1986)

    Article  Google Scholar 

  31. E. Pfleghaar, J. Wurster, S.I. Kanorsky, A. Weis, Time of flight effects in nonlinear magneto-optical spectroscopy. Opt. Commun. 99, 303 (1993)

    Article  Google Scholar 

  32. M. Erhard, H.-P. Helm, Buffer-gas effects on dark resonances: theory and experiment. Phys. Rev. A 63, 043813 (2001)

    Article  Google Scholar 

  33. M.V. Balabas, T. Karaulanov, M.P. Ledbetter, D. Budker, Polarized alkali-metal vapor with minute-long transverse spin-relaxation time. Phys. Rev. Lett. 105, 070801 (2010)

    Article  Google Scholar 

  34. V.G. Lucivero, P. Anielski, W. Gawlik, M.W. Mitchell, Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature. Rev. Sci. Instr. 85, 113108 (2014)

    Article  Google Scholar 

  35. W. Wasilewski, K. Jensen, H. Krauter, J.J. Renema, M.V. Balabas, E.S. Polzik, Phys. Rev. Lett. 104, 133601 (2010)

    Article  Google Scholar 

  36. I. Novikova, A.B. Matsko, V.L. Velichansky, M.O. Scully, G.R. Welch, Phys. Rev. A 63, 12 (2001)

    Article  Google Scholar 

  37. G. Vasilakis, V. Shah, M.V. Romalis, Phys. Rev. Lett. 106, 143601 (2011)

    Article  Google Scholar 

  38. K. Jensen, V.M. Acosta, J.M. Higbie, M.P. Ledbetter, S.M. Rochester, D. Budker, Phys. Rev. A 79, 023406 (2009)

    Article  Google Scholar 

  39. D. Budker, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, M. Zolotorev, Sensitive magnetometry based on nonlinear magneto-optical rotation. Phys. Rev. A 62, 043403 (2000)

    Article  Google Scholar 

  40. S. Pustelny, A. Wojciechowski, M. Gring, M. Kotyrba, J. Zachorowski, W. Gawlik, Magnetometry based on nonlinear magneto-optical rotation with amplitude modulated light. J. Appl. Phys. 103, 063108 (2008)

    Article  Google Scholar 

  41. W. Chalupczak, R.M. Godun, S. Pustelny, W. Gawlik, Room temperature femtotesla radio-frequency atomic magnetometer. Appl. Phys. Lett. 100, 242401 (2012)

    Article  Google Scholar 

  42. V.V. Yashchuk, S.-K. Lee, E. Paperno, Magnetic shielding, in Optical Magnetometry, ed. by D. Budker, D.F.J. Kimball (Cambridge University Press, Cambridge, 2013), pp. 104–124

    Google Scholar 

  43. S. Xu, S.M. Rochester, V.V. Yashchuk, M.H. Donaldson, D. Budker, Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation. Rev. Sci. Instr. 77, 083106 (2006)

    Article  Google Scholar 

  44. S.J. Smullin, I.M. Savukov, G. Vasilakis, R.K. Ghosh, M.V. Romalis, Low-noise high-density alkali-metal scalar magnetometer. Phys. Rev. A 80, 033420 (2009)

    Article  Google Scholar 

  45. P. Wlodarczyk, S. Pustelny, J. Zachorowski, M. Lipinski, Modeling an optical magnetometer with electronic circuits-analysis and optimization. J. Instr. 7, P07015 (2012)

    Article  Google Scholar 

  46. S. Pustelny, W. Gawlik, S.M. Rochester, D.F. Jackson Kimball, V.V. Yashchuk, D. Budker, Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields. Phys. Rev. A 74, 063420 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Gawlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gawlik, W., Pustelny, S. (2017). Nonlinear Magneto-Optical Rotation Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics