Skip to main content

Magnetic Resonance Based Atomic Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

The chapter gives a comprehensive account of the theory of atomic magnetometers deploying optically detected magnetic resonance (ODMR) in spin-polarized atomic ensembles, and of the practical realization of such magnetometers. We address single laser beam experiments throughout, but give explicit hints on how the results can be extended to pump-probe configurations. After a general introduction and the presentation of a classification of atomic magnetometer principles, we address the three major processes, viz., polarization creation, atom-field interaction, and optical detection that occur in the subclass of magnetic resonance-based magnetometers. The time-independent signals on which so-called Hanle magnetometers built are also reviewed for both spin-oriented and spin-aligned media. In the extended central part we derive an algebraic master expression (valid for all ODMR magnetometers) that expresses the signal, i.e., the detected time-dependent light power in terms of all system parameters. We then give explicit algebraic results for the absolute signals observed in the so-called Mz- and Mx-configurations for various geometries with arbitrary relative orientations of the static field, the oscillating field and the light propagation direction. Although the chapter’s main focus is on magnetic resonance processes driven by oscillating magnetic fields (we treat both spin-oriented and spin-aligned media), we also address magnetometers in which the magnetic resonance is driven by amplitude-, frequency-, or polarization-modulated light. The final section of the chapter gives a detailed account of the physical realization of an Mx-magnetometer array and the electronics used for its operation. We demonstrate that the observed resonance signals have the predicted spectral shapes and illustrate procedures for optimizing the magnetometric sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Free spin precession magnetometers discussed in Chap. 16 form an exception from this general rule.

  2. 2.

    Here also the 3He magnetometers described by W. Heil elsewhere in this book are a most notable exception.

  3. 3.

    The non-absorbing state \( |1/2, + 1/2\rangle \) is called a ‘dark’ state since atoms in that state do not fluoresce, while the \( |1/2, - 1/2\rangle \) state is a ‘bright’ state. In this sense the oscillatory time-dependence of the magnetometer principles discussed below in this chapter can be understood as resulting from coherent oscillations between dark and bright states.

  4. 4.

    Note that \( S_{z} \) and \( A_{zz} \) in Eq. 9 refer to a quantization axis along the \( {\mathbf{k}} \)-vector, while the quantization axis defining \( A_{{z^{{\prime }} z^{{\prime }} }}^{{\prime }} \) in Eq. 10 is along the light polarization as shown in Fig. 2.

  5. 5.

    Magnetic resonance transitions can also be driven between atomic fine or hyperfine structure components, in which case the characteristic frequencies, \( \omega_{\text{fs}} = \varDelta E_{\text{fs}} /\hbar \) and \( \omega_{\text{hfs}} = \varDelta E_{\text{hfs}} /\hbar \), respectively, are determined by internal magnetic fields.

  6. 6.

    The neglected component induces a systematic red shift \( \varDelta \omega_{L} \) (Bloch-Siegert shift) of the magnetic resonance frequency \( \omega_{L} \) that is on the order of \( \varDelta \omega_{L} \sim \gamma^{2} /\omega_{L} \). where \( \gamma \) is the polarization relaxation rate.

  7. 7.

    The results given below are easily extended to magnetometers using a probe beam that propagates along a direction \( {\mathbf{k}}_{\text{probe}} \ne {\mathbf{k}}_{\text{pump}} \). For this one has to project \( \mathbf{S}(t) \) onto the probe beam by \( S_{\text{probe}} (t) = \mathbf{S}(t) \cdot {\mathbf{k}}_{\text{probe}} /|{\mathbf{k}}_{\text{probe}} | \) and replace in the subsequent equations \( S_{k} (t) \) by \( S_{\text{probe}} (t) \).

  8. 8.

    Besides its dependence on the field orientation, the phase offset \( \phi_{0} \) may be affected by additional phase shifts arising, e.g., from complex impedances in the coil driving and photo-detector circuits, or geometrical alignment uncertainties of the rf coils.

  9. 9.

    We note that the modulation frequency \( \omega_{\bmod } \) used in this section plays an equivalent role than the rf frequency \( \omega_{\text{rf}} \) in the ‘true’ magnetic resonance magnetometrs discussed in the previous sections.

  10. 10.

    For polarization modulation we use the acronym SM---meaning Stokes (parameter) modulation---since the acronym \( PM \) might be mistaken with the standing acronym for phase modulation.

  11. 11.

    In alkali atoms the \( F \to F - 1 \) hyperfine component of the \( |n^{2} S_{1/2} \rangle \to |n^{2} P_{1/2} \rangle \) transition yields the largest signals.

  12. 12.

    Here we used the proportionality between \( P_{0} \) and \( P_{\text{DC}} \) to write the scaling of the noise with respect to \( P_{0} \).

  13. 13.

    Lookup table based implementations of the sin and cos functions [55] profit from this representation since the two most significant bits of \( \phi \) correspond to its quadrant.

References

  1. D. Budker, W. Gawlik, D.F. Kimball, S.M. Rochester, V.V. Yashchuk, A. Weis, Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002)

    Article  Google Scholar 

  2. D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)

    Article  Google Scholar 

  3. D. Budker, D.F. Jackson Kimball (ed.), Optical Magnetometry (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  4. J.C. Lehmann, C. Cohen-Tannoudji, Pompage optique en champ magnétique faible. CR Acad. Sci. Paris 258, 4463 (1964)

    Google Scholar 

  5. T. Scholtes, V. Schultze, R. IJsselsteijn, S. Woetzel, H.-G. Meyer, Light-narrowed optically pumped M x magnetometer with a miniaturized Cs cell. Phys. Rev. A 84, 043416 (2011)

    Google Scholar 

  6. N. Castagna, A. Weis, Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect. Phys. Rev. A 84, 053421 (2012). (85:059907, November 2011. Erratum)

    Google Scholar 

  7. N. Castagna, A. Weis, Erratum: Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect. Phys. Rev. A 85, 059907 (2012) ([Phys. Rev. A 84, 053421 (2011)])

    Google Scholar 

  8. E. Breschi, A. Weis, Ground-state Hanle effect based on atomic alignment. Phys. Rev. A 86(5), 053427 (2012)

    Google Scholar 

  9. I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422(6932), 596–599 (2003)

    Article  Google Scholar 

  10. Z.D. Grujić, P.A. Koss, G. Bison, A. Weis, A sensitive and accurate atomic magnetometer based on free spin precession. Eur. Phys. J. D 69, 1–10 (2015)

    Google Scholar 

  11. L. Lenci, A. Auyuanet, S. Barreiro, P. Valente, A. Lezama, H. Failache, Vectorial atomic magnetometer based on coherent transients of laser absorption in Rb vapor. Phys. Rev. A 89(4), 043836 (2014)

    Google Scholar 

  12. A. Nikiel, P. Blümler, W. Heil, M. Hehn, S. Karpuk, A. Maul, E. Otten, L.M. Schreiber, M. Terekhov, Ultrasensitive 3He magnetometer for measurements of high magnetic fields. Eur. Phys. J. D 68(11), 1–12 (2014)

    Google Scholar 

  13. C. Cohen-Tannoudji, J. Duppont-Roc, S. Haroche, F. Laloë, Detection of the static magnetic field produced by the oriented nuclei of optically pumped He-3 gas. Phys. Rev. Lett. 22(15), 758 (1969)

    Google Scholar 

  14. H.C. Koch, G. Bison, Z.D. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis, Design and performance of an absolute 3He/Cs magnetometer. Eur. Phys. J. D 69, 1–12 (2015)

    Google Scholar 

  15. L. Moi, S. Cartaleva, Sensitive magnetometers based on dark states. Europhys. News 43(6), 2427 (2012)

    Google Scholar 

  16. C. Cohen-Tannoudji, A. Kastler, Optical pumping. Rev. Mod. Phys. 5, 1–81 (1966)

    Google Scholar 

  17. W. Happer, Optical pumping. Rev. Mod. Phys. 44(2), 169–249 (1972)

    Google Scholar 

  18. S.M. Rochester, D. Budker, Atomic polarization visualized. Am. J. Phys. 69(4), 450 (2001)

    Article  Google Scholar 

  19. K. Blum, Density matrix theory and applications (Plenum Press, Berlin, 1996)

    Book  MATH  Google Scholar 

  20. I. Fescenko, A. Weis, Imaging magnetic scalar potentials by laser-induced fluorescence from bright and dark atoms. J. Phys. D Appl. Phys. 47(23), 235001 (2014)

    Article  Google Scholar 

  21. A. Weis, V.A. Sautenkov, T.W. Hänsch, Observation of ground-state Zeeman coherences in the selective reflection from cesium vapor. Phys. Rev. A 45(11), 7991 (1992)

    Google Scholar 

  22. B. Gross, N. Papageorgiou, V. Sautenkov, A. Weis, Velocity selective optical pumping and dark resonances in selective reflection spectroscopy. Phys. Rev. A 55(4), 2973 (1997)

    Article  Google Scholar 

  23. A. Weis. unpublished

    Google Scholar 

  24. G. Bevilacqua, E. Breschi, A. Weis, Steady-state solutions for atomic multipole moments in an arbitrarily oriented static magnetic field. Phys. Rev. 89(3), 033406 (2014)

    Article  Google Scholar 

  25. Z.D. Grujić, A. Weis, Atomic magnetic resonance induced by amplitude-, frequency-, or polarization-modulated light. Phys. Rev. A 88, 012508 (2013)

    Google Scholar 

  26. N. Castagna, G. Bison, G. Di Domenico, A. Hofer, P. Knowles, C. Macchione, H. Saudan, A. Weis, A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells. Appl. Phys. B Lasers Opt. 96, 763–772 (2009)

    Google Scholar 

  27. G. Bison, R. Wynands, A. Weis, Optimization and performance of an optical cardiomagnetometer. J. Opt. Soc. Am. B 22(1), 77–87 (2005)

    Article  MathSciNet  Google Scholar 

  28. S. Groeger, G. Bison, J.-L. Schenker, R. Wynands, A. Weis, A high-sensitivity laser-pumped M x magnetometer. Eur. Phys. J. D 38, 239–247 (2006)

    Article  Google Scholar 

  29. A. Weis, G. Bison, A.S. Pazgalev, Theory of double resonance magnetometers based on atomic alignment. Phys. Rev. A 74, 033401 (2006)

    Article  Google Scholar 

  30. U. Fano, Precession equation of a spinning particle in nonuniform fields. Phys. Rev. 133(3B), B828 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  31. H.-J. Stöckmann, D. Dubbers, Generalized spin precession equations. New J. Phys. 16(5), 053050 (2014)

    Article  Google Scholar 

  32. G. Di Domenico, G. Bison, S. Groeger, P. Knowles, A.S. Pazgalev, M. Rebetez, H. Saudan, A. Weis, Experimental study of laser-detected magnetic resonance based on atomic alignment. Phys. Rev. A, 74(6), 063415 (2006)

    Google Scholar 

  33. G. Di Domenico, H. Saudan, G. Bison, P. Knowles, A. Weis, Sensitivity of double-resonance alignment magnetometers. Phys. Rev. A 76(2), 023407 (2007)

    Article  Google Scholar 

  34. W.E. Bell, A.L. Bloom, Optically driven spin precession. Phys. Rev. Lett. 6, 280–281 (1961)

    Article  Google Scholar 

  35. E. Breschi, Z.D. Grujić, P. Knowles, A. Weis, A high-sensitivity push-pull magnetometer. Appl. Phys. Lett. 104(2), 023501 (2014)

    Article  Google Scholar 

  36. V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, H.-G. Meyer, Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer. Opt. Express 20(13), 14201–14212 (2012)

    Google Scholar 

  37. V. Acosta, M.P. Ledbetter, S.M. Rochester, D. Budker, D.F. Jackson Kimball, D.C. Hovde, W. Gawlik, S. Pustelny, J. Zachorowski, V.V. Yashchuk, Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range. Phys. Rev. A 73(5), 053404 (2006)

    Google Scholar 

  38. D.F. Jackson Kimball, L.R. Jacome, S. Guttikonda, E.J. Bahr, L.F. Chan, Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rubidium D2 line. J. Appl. Phys. 106(6), 063113 (2009)

    Google Scholar 

  39. I. Fescenko, P. Knowles, A. Weis, E. Breschi, A Bell-Bloom experiment with polarization-modulated light of arbitrary duty cycle. Opt. Express 21(13), 15121–15130 (2013)

    Google Scholar 

  40. E. Breschi, Z.D. Gruijć, P. Knowles, A. Weis, Magneto-optical spectroscopy with polarization-modulated light. Phys. Rev. A 88(2),022506 (2013)

    Google Scholar 

  41. G. Bevilacqua, E. Breschi, Magneto-optic spectroscopy with linearly polarized modulated light: theory and experiment. Phys. Rev. A 89(6), 062507 (2014)

    Article  Google Scholar 

  42. M. Bass, in Handbook of Optics: Fundamentals, techniques, and design. Number Bd. 1. Handbook of Optics (McGraw-Hill, New York, 1994)

    Google Scholar 

  43. S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall Inc, Upper Saddle River, 1993)

    MATH  Google Scholar 

  44. D.C. Rife, R. Boorstyn, Single tone parameter estimation from discrete-time observations. Inf. Theor. IEEE Trans. 20(5), 591–598 (1974)

    Article  MATH  Google Scholar 

  45. V. Schultze, R. IJsselsteijn, H.-G. Meyer, Noise reduction in optically pumped magnetometer assemblies. Appl. Phys. B 100(4), 717–724 (2010)

    Article  Google Scholar 

  46. A. Corney, Atomic and laser spectroscopy (Clarendon Press, Oxford, 1978)

    Google Scholar 

  47. A. Abragam, The principles of nuclear magnetic resonance (Clarendon, Oxford, 1961)

    Google Scholar 

  48. A.L. Bloom, Principles of operation of the rubidium vapor magnetometer. Appl. Opt. 1, 61 (1962)

    Article  Google Scholar 

  49. Stanford Research Systems. www.thinksrs.com

  50. Signal Recovery. www.signalrecovery.com

  51. Zurich Instruments AG. www.zhinst.com

  52. J.E. Volder, The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. EC 8(3), 330–334 (1959)

    Google Scholar 

  53. J. Gaspar, S.F. Chen, A. Gordillo, M. Hepp, P. Ferreyra, C. Marqués, Digital lock in amplifier: study, design and development with a digital signal processor. Microprocess. Microsyst. 28(4), 157–162 (2004)

    Google Scholar 

  54. Stanford Research Systems, Users Manual, Model SR830 DSP Lock-In Amplifier (2011)

    Google Scholar 

  55. A. Restelli, R. Abbiati, A. Geraci, Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications. Rev. Sci. Instrum. 76(9), 093112 (2005)

    Article  Google Scholar 

  56. J.-J. Vandenbussche, P. Lee, J. Peuteman, On the accuracy of digital phase sensitive detectors implemented in FPGA technology. IEEE Trans. Instrum. Measur. 63(8), 1926–1936 (2014)

    Google Scholar 

  57. Y. Hu, The quantization effects of the CORDIC algorithm. IEEE Trans. Sig. Process. 40(4),834–844 (1992)

    Google Scholar 

  58. K.J. Åström, T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2 edn. (Instrument Society of America, Research Triangle Park, NC, 1995)

    Google Scholar 

  59. G. Lembke, S.N. Erné, H. Nowak, B. Menhorn, A. Pasquarelli, G. Bison, Optical multichannel room temperature magnetic field imaging system for clinical application. Biomed. Opt. Express 5(3), 876–881 (2014)

    Article  Google Scholar 

  60. G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, A. Weis, A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 95(17), 173701 (2009)

    Google Scholar 

  61. H. Xia, A. Ben-Amar Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89, 211104 (2006)

    Google Scholar 

  62. CODIXX AG. www.codixx.de

  63. Hamamatsu Photonics. Si PIN Photodiodes, S6775 series datasheet (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Weis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weis, A., Bison, G., Grujić, Z.D. (2017). Magnetic Resonance Based Atomic Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics