Skip to main content

Cavity Optomechanical Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

  • 5016 Accesses

Abstract

This chapter introduces a new form of magnetometer which combines precision cavity optomechanical measurement with magnetostrictive material response. Such magnetometers can be fabricated on-chip and function both at room temperature and in earths magnetic field. Firstly, we derive the fundamental limit to sensitivity due to the thermomechanical fluctuations of the system, showing that sensitivity exceeding the current state-of-the-art is in-principle possible. We then show that bandwidths in the megahertz range are feasible. Then, we discuss the experimental implementation of these magnetometers, with demonstrated sensitivity at the level of 200 picotesla and tens of micrometer resolution. Finally, we compare both theory and experiments to the state-of-the-art. The sensitivity of current devices is less than a factor of 100 away from the best similarly sized cryogenic SQUID magnetometers, while theory suggests that sensitivity over an order of magnitude superior to those devices is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The name “Terfenol” derives from terbium, iron (Fe) and the the abbreviation NOL for the Naval Ordinance Laboratory.

  2. 2.

    If we define the measurement strength as the inverse of the on-resonance measurement accuracy B N,min.

  3. 3.

    They can even exceed this limit utilising quantum correlations between photons.

References

  1. F. Bucholtz et al., High frequency fibre optic magnetometer with 70 fT Hz−1/2 resolution. Electron. Lett. 25(25), 1719–1720 (1989)

    Article  Google Scholar 

  2. R. Osiander et al., A microelectromechanical-based magnetostrictive magnetometer. Appl. Phys. Lett. 69(19), 2930 (1996)

    Article  Google Scholar 

  3. Y. Hui et al., High resolution magnetometer based on a high frequency magnetoelectric MEMS-CMOS oscillator. J Microelectromech S 24, 1 (2015)

    Article  Google Scholar 

  4. S. Forstner et al., Cavity optomechanical magnetometer. Phys. Rev. Lett. 108, 120801 (2012)

    Article  Google Scholar 

  5. S. Forstner et al., Ultrasensitive optical magnetometry. Adv. Mater. 26, 6348 (2014)

    Article  Google Scholar 

  6. D.L. Sage et al., Efficient photon detection from color centers in a diamond optical waveguide. Phys. Rev. B Rapid 85, 121202(R) (2012)

    Article  Google Scholar 

  7. S. Forstner et al., Sensitivity of cavity optomechanical field sensors. Proc SPIE 8439, 84390U (2012)

    Article  Google Scholar 

  8. L.P. Ichkitidze et al., Magnetic field sensors in medical diagnostics. Biomed. Eng. 48(6), 305–309 (2015)

    Article  Google Scholar 

  9. A. Edelstein, Advances in magnetometry. J. Phys.: Condens. Matter 19, 165217 (2007)

    Google Scholar 

  10. A. Laraoui et al., Diamond nitrogen-vacancy center as a probe of random fluctuations in a nuclear spin ensemble. Phys. Rev. B 84, 104301 (2011)

    Article  Google Scholar 

  11. D. Rühmer et al., Vector fluxgate magnetometer for high operation temperatures up to 250 °C. Sens. Actuat. A-Phys. 228(1), 118–124 (2015)

    Article  Google Scholar 

  12. H. Can, U. Topal, Design of ring core fluxgate magnetometer as attitude control sensor for low and high orbit satellites. J. Supercond. Nov. Magn. 28(3), 1093–1096 (2015)

    Article  Google Scholar 

  13. I. Kovacic, M.J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behavior (Wiley, London, 2011)

    Google Scholar 

  14. M.B. Moffett et al., Characterization of Terfenol-D for magnetostrictive transducers. J. Acoust. Sec. Am. 89(3), 1448–1455 (1991)

    Article  Google Scholar 

  15. G. Engdahl, Handbook of Gieant Magnetostrictive Materials (Academic Press, San Diego, 2000)

    Google Scholar 

  16. A. Schliesser et al., Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009)

    Article  Google Scholar 

  17. W.P. Bowen, G.J. Milburn, Quantum Optomechanics (CRC Press, Taylor & Francis Publishing, London, 2015)

    Google Scholar 

  18. C.W. Gardiner, M.J. Collett, Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761 (1985)

    Article  MathSciNet  Google Scholar 

  19. T.P. Purdy et al., Observation of radiation pressure shot noise on a macroscopic object. Science 339(6121), 801–804 (2013)

    Article  Google Scholar 

  20. S. Schreppler et al., Optically measuring force near the standard quantum limit. Science 344(6191), 1486–1489 (2014)

    Article  Google Scholar 

  21. L. Ding et al., High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett. 105, 263903 (2010)

    Article  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 2nd edn. (Pergamon Press, New York, 1970)

    Google Scholar 

  23. M.H. Saad, Elasticity: Theory, Applications, and Numerics, 3nd edn. (Academic Press, New York, 2014)

    Google Scholar 

  24. D.K. Armani et al., Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003)

    Article  Google Scholar 

  25. T.J. Kippenberg et al., Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005)

    Article  Google Scholar 

  26. D.M. Dagenais et al., Elimination of residual signals and reduction of noise in a low-frequency magnetic fiber sensor. Appl. Phys. Lett. 53, 1474 (1988)

    Article  Google Scholar 

  27. M. Sawicki et al., Sensitive SQUID magnetometry for studying nanomagnetism. Semicond. Sci. Technol. 26(6), 064006 (2011)

    Article  MathSciNet  Google Scholar 

  28. H.B. Dang et al., Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97, 151110 (2010)

    Article  Google Scholar 

  29. M.V. Romalis, H.B. Dang, Atomic magnetometers for materials characterization. Mater. Today 14(6), 258–262 (2011)

    Article  Google Scholar 

  30. D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3, 227–234 (2007)

    Article  Google Scholar 

  31. G. Balasubramanian et al., Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009)

    Article  Google Scholar 

  32. T. Wolf et al., A subpicotesla diamond magnetometer. arXiv:1411.6553 [quant-ph] (2014)

  33. V. Shah et al., Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat. Photon. 1, 649–652 (2007)

    Article  Google Scholar 

  34. J.R. Kirtley et al., High-resolution scanning SQUID microscope. Appl. Phys. Lett. 66(9), 1138–1140 (1995)

    Article  Google Scholar 

  35. F. Baudenbacher et al., Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples. Appl. Phys. Lett. 82(20), 3487–3489 (2003)

    Article  Google Scholar 

  36. M.I. Faley et al., A new generation of the HTS multilayer dc-SQUID magnetometers and gradiometers. J. Phys: Conf. Ser. 43(1), 1199–1202 (2006)

    Google Scholar 

  37. A. Sandhu et al., Nano and micro Hall-effect sensors for room-temperature scanning hall probe microscopy. Microelectron. Eng. 73–74, 524–528 (2004)

    Article  Google Scholar 

  38. A. Sandhu et al., 50 nm hall sensors for room temperature scanning hall probe microscopy. Jpn. J. Appl. Phys. 43(2), 777–778 (2004)

    Article  Google Scholar 

  39. J.R. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455(2), 644–648 (2008)

    Article  Google Scholar 

  40. L.M. Pham et al., Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys. 13, 045021 (2011)

    Article  Google Scholar 

  41. K. Jensen et al., Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 112, 160802 (2014)

    Article  Google Scholar 

  42. V.M. Acosta et al., Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond. Appl. Phys. Lett. 97(17), 174104 (2010)

    Article  Google Scholar 

  43. M. Vengalattore et al., High-resolution magnetometry with a Spinor Bose-Einstein condensate. Phys. Rev. Lett. 98(20), 200801 (2007)

    Article  Google Scholar 

  44. D. Shuxiang et al., Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Appl. Phys. Lett. 83(11), 2265 (2003)

    Article  Google Scholar 

  45. S. Forstner et al., Sensitivity and performance of cavity optomechanical field sensors. Photonic Sens. 2(3), 259–270 (2012)

    Article  Google Scholar 

  46. V. Demas, T.J. Lowery, Magnetic resonance for in vitro medical diagnostics: superparamagnetic nanoparticle-based magnetic relaxation switches. New J. Phys. 13, 025005 (2011)

    Article  Google Scholar 

  47. S. Steinert et al., Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013)

    Article  Google Scholar 

  48. L.S. Bouchard et al., Detection of the Meissner effect with a diamond magnetometer. New J. Phys. 13, 025017 (2011)

    Article  Google Scholar 

  49. M.S. Chang et al., Observation of Spinor dynamics in optically trapped Rb87 Bose-Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004)

    Article  Google Scholar 

  50. K.B. Blagoev et al., Modelling the magnetic signature of neuronal tissue. Neuroimage 37, 137–148 (2007)

    Article  Google Scholar 

  51. M.P. Ledbetter et al., Near-zero-field nuclear magnetic resonance. Phys. Rev. Lett. 107(10), 107601 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warwick P. Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bowen, W.P., Yu, C. (2017). Cavity Optomechanical Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics