Skip to main content

Superconducting Quantum Interference Device (SQUID) Magnetometers

  • Chapter
  • First Online:
High Sensitivity Magnetometers

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 19))

Abstract

Direct Current Superconducting QUantum Interference Devices (dc SQUIDs) are sensors for the detection of magnetic flux or any physical quantity that can be transformed into magnetic flux. They consist of a superconducting loop interrupted by two resistively shunted Josephson tunnel junctions. Typically operated at 4.2 K, they exhibit magnetic flux noise levels of the order of 1 μΦ0/Hz1/2, corresponding to a noise energy of 10−32 J/Hz1/2. They can be used for example as magnetometers, magnetic gradiometers, current sensors and voltmeters, susceptometers or (rf) amplifier. With their large bandwidth and flat frequency response ranging from dc to GHz, they are excellent suited for a wide variety of applications, such as e.g. biomagnetism and geophysical exploration to the detection of gravity waves and magnetic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The equivalent flux noise S 1/2 Φ is given by the measured voltage noise S 1/2 V and the transfer function V Φ as S 1/2 Φ  = S 1/2 V /V Φ .

  2. 2.

    Depending on the location on Earth and taking into account only the crustal contribution of the Earth’s magnetic field.

  3. 3.

    In a 1 Hz bandwidth, the dynamic range can be calculated as DR = 20 * log(130µT/10fT/Hz1/2*crest factor). Taking a crest factor of 4 this results in DR = 190 dB > 30 Bit.

References

  1. M. Tinkham, Introduction to Superconductivity (Dover Publications, USA, 1996)

    Google Scholar 

  2. W. Buckel, R. Kleiner, Superconductivity (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  3. H. Weinstock, Squid Sensors: Fundamentals, Fabrication, and Applications (Kluwer Academic Publishers, Dordrecht, 1996)

    Google Scholar 

  4. J. Clarke, A.I. Braginski, The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2004)

    Google Scholar 

  5. J. Clarke, A.I. Braginski, The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006)

    Google Scholar 

  6. P. Seidel, Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015)

    Google Scholar 

  7. R. Jaklevic, J. Lambe, A. Silver, J. Mercereau, Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159–160 (1964)

    Article  Google Scholar 

  8. B.D. Josephson, Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)

    Article  MATH  Google Scholar 

  9. D.E. McCumber, Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39, 3113–3118 (1968)

    Article  Google Scholar 

  10. W.C. Stewart, Current-voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277–280 (1968)

    Article  Google Scholar 

  11. C.M. Falco, W.H. Parker, S.E. Trullinger, P.K. Hansma, Effect of thermal noise on current-voltage characteristics of Josephson junctions. Phys. Rev. B. 10, 1865–1873 (1974)

    Article  Google Scholar 

  12. R.F. Voss, Noise characteristics of an ideal shunted Josephson junction. J. Low Temp. Phys. 42, 151–163 (1981)

    Article  Google Scholar 

  13. C.D. Tesche, J. Clarke, dc SQUID: noise and optimization. J. Low Temp. Phys. 29, 301–331 (1977)

    Article  Google Scholar 

  14. M.B. Ketchen, D.D. Awschalom, W.J. Gallagher, A.W. Kleinsasser, R.L. Sandstrom, J.R. Rozen, B. Bumble, Design, fabrication, and performance of integrated miniature SQUID susceptometers. Trans. Magn. IEEE 25, 1212–1215 (1989)

    Article  Google Scholar 

  15. R.H. Koch, J. Clarke, W.M. Goubau, J.M. Martinis, C.M. Pegrum, D.J. Harlingen, Flicker (1/f) noise in tunnel junction dc SQUIDS. J. Low Temp. Phys. 51, 207–224 (1983)

    Article  Google Scholar 

  16. S. Machlup, Noise in semiconductors—spectrum of a two-parameter random signal. J. Appl. Phys. 25, 341–343 (1954)

    Article  MATH  Google Scholar 

  17. M.A. Washington, T.A. Fulton, Observation of flux trapping threshold in narrow superconducting thin films. Appl. Phys. Lett. 40, 848–850 (1982)

    Article  Google Scholar 

  18. G. Stan, S. Field, J.M. Martinis, Critical field for complete vortex expulsion from narrow superconducting strips. Phys. Rev. Lett. 92, 097003 (2004)

    Article  Google Scholar 

  19. K. Kuit, J. Kirtley, W. van der Veur, C. Molenaar, F. Roesthuis, A. Troeman, J. Clem, H. Hilgenkamp, H. Rogalla, J. Flokstra, Vortex trapping and expulsion in thin-film YBa2Cu3O7−δ strips. Phys. Rev. B. 77, 134504 (2008)

    Article  Google Scholar 

  20. R.H. Koch, D. DiVincenzo, J. Clarke, Model for 1/f flux noise in SQUIDs and qubits. Phys. Rev. Lett. 98, 267003 (2007)

    Article  Google Scholar 

  21. M.B. Ketchen, W.J. Gallagher, A.W. Kleinsasser, S. Murphy and J.R. Clem, in dc SQUID Flux Focused, ed by H.D. Hahlbohm, H. Lübbig. SQUID ‘85—Superconducting Quantum Interference Devices and their Applications (De Gruyter, 1986), pp. 865–871

    Google Scholar 

  22. J.R. Kirtley, Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys. 73, 126501 (2010)

    Article  Google Scholar 

  23. J. Vrba, J. Nenonen, L. Trahms, in Biomagnetism, ed by J. Clarke, A.I. Braginski. The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006), pp. 269–389

    Google Scholar 

  24. H. Nowak, in SQUIDs in Biomagnetism, ed by P. Seidel. Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015), pp. 992–1019

    Google Scholar 

  25. T.R. Clem, C.P. Foley, M.N. Keene, in SQUIDs for Geophysical Survey and Magnetic Anomaly Detection, ed by J. Clarke, A.I. Braginski. The SQUID Handbook: Applications of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2006), pp. 481–543

    Google Scholar 

  26. R. Stolz, in Geophysical Exploration, ed by P. Seidel. Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015), pp. 1020–1041

    Google Scholar 

  27. R. Kraus, M. Espy, P. Magnelind, P. Volegov, Ultra-Low Field Nuclear Magnetic Resonance: A New MRI Regime (Oxford University Press, USA, 2014)

    Book  Google Scholar 

  28. J.M. Jaycox, M.B. Ketchen, Planar coupling scheme for ultra low noise dc SQUIDs. Trans. Magn. IEEE 17, 400–403 (1981)

    Article  Google Scholar 

  29. M.B. Ketchen, Integrated thin-film dc SQUID sensors. Trans. Magn. IEEE 23, 1650–1657 (1987)

    Article  Google Scholar 

  30. J. Knuutila, M. Kajola, H. Seppä, R. Mutikainen, J. Salmi, Design, optimization, and construction of a dc SQUID with complete flux transformer circuits. J. Low Temp. Phys. 71, 369–392 (1988)

    Article  Google Scholar 

  31. R. Cantor, in dc SQUIDS: Design, optimization and practical applications, ed by H. Weinstock. Squid Sensors: Fundamentals, Fabrication, and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 179–233

    Google Scholar 

  32. J. Clarke, in SQUID fundamentals, ed by H. Weinstock. SQUID Sensors: Fundamentals, Fabrication and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 1–62

    Google Scholar 

  33. J.E. Zimmerman, Sensitivity enhancement of superconducting quantum interference devices through use of fractional-turn loops. J. Appl. Phys. 42, 4483–4487 (1971)

    Article  Google Scholar 

  34. F. Dettmann, W. Richter, G. Albrecht, W. Zahn, A monolithic thin film dc-SQUID. Physica Status Solidi (a). 51, K185–K188 (1979)

    Google Scholar 

  35. P. Carelli, V. Foglietti, Behavior of a multiloop dc superconducting quantum interference device. J. Appl. Phys. 53, 7592–7598 (1982)

    Article  Google Scholar 

  36. D. Drung, S. Knappe, H. Koch, Theory for the multiloop dc superconducting quantum interference device magnetometer and experimental verification. J. Appl. Phys. 77, 4088–4098 (1995)

    Article  Google Scholar 

  37. V. Zakosarenko, L. Warzemann, J. Schambach, K. Blüthner, K.H. Berthel, G. Kirsch, P. Weber, R. Stolz, Integrated LTS gradiometer SQUID systems for unshielded measurements in a disturbed environment. Supercond. Sci. Technol. 9, A112–A115 (1996)

    Article  Google Scholar 

  38. R. Stolz, L. Fritzsch, H.G. Meyer, LTS SQUID sensor with a new configuration. Supercond. Sci. Technol. 12, 806–808 (1999)

    Article  Google Scholar 

  39. D. Drung, in Advanced SQUID read-out electronics, ed by H. Weinstock. SQUID Sensors: Fundamentals, Fabrication and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 63–116

    Google Scholar 

  40. D. Drung, Low-frequency noise in low-Tc multiloop magnetometers with additional positive feedback. Appl. Phys. Lett. 67, 1474–1476 (1995)

    Article  Google Scholar 

  41. N. Oukhanski, R. Stolz, H.G. Meyer, High slew rate, ultrastable direct-coupled readout for dc superconducting quantum interference devices. Appl. Phys. Lett. 89, 063502 (2006)

    Article  Google Scholar 

  42. D. Drung, C. Hinnrichs, H.-J. Barthelmess, Low-noise ultra-high-speed dc SQUID readout electronics. Supercond. Sci. Technol. 19, S235–S241 (2006)

    Article  Google Scholar 

  43. D. Drung, R. Cantor, M. Peters, H.J. Scheer, H. Koch, Low-noise high-speed dc superconducting quantum interference device magnetometer with simplified feedback electronics. Appl. Phys. Lett. 57, 406–408 (1990)

    Article  Google Scholar 

  44. V. Foglietti, Double dc SQUID for flux-locked-loop operation. Appl. Phys. Lett. 59, 476–478 (1991)

    Article  Google Scholar 

  45. R.P. Welty, J.M. Martinis, Two-stage integrated SQUID amplifier with series array output. IEEE Trans. Appl. Supercond. 3, 2605–2608 (1993)

    Article  Google Scholar 

  46. M.E. Huber, P.A. Neil, R.G. Benson, D.A. Burns, A.F. Corey, C.S. Flynn, Y. Kitaygorodskaya, O. Massihzadeh, J.M. Martinis, G.C. Hilton, dc SQUID series array amplifiers with 120 MHz bandwidth. IEEE Trans. Appl. Supercond. 11, 1251–1256 (2001)

    Article  Google Scholar 

  47. J. Oppenländer, C. Häussler, N. Schopohl, Non Phi0 periodic macroscopic quantum interference in one-dimensional parallel Josephson junction arrays with unconventional grating structure. Phys. Rev. B. 63, 024511 (2000)

    Article  Google Scholar 

  48. C. Häussler, J. Oppenländer, N. Schopohl, Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices. J. Appl. Phys. 89, 1875 (2001)

    Article  Google Scholar 

  49. R. Cantor, F. Ludwig, in SQUID Fabrication Technology, ed by J. Clarke, A.I. Braginski. The SQUID Handbook vol. 1: Fundamentals and Technology of SQUIDs and SQUID systems (Wiley-VCH, Weinheim, 2004), pp. 93–126

    Google Scholar 

  50. H. Hayakawa, N. Yoshikawa, S. Yorozu, A. Fujimaki, Superconducting digital electronics. Proc. IEEE 92, 1549–1563 (2004)

    Article  Google Scholar 

  51. K.K. Likharev, Superconductor digital electronics. Physica C 482, 6–18 (2012)

    Article  Google Scholar 

  52. J.V. Gates, M.A. Washington, M. Gurvitch, Critical current uniformity and stability of Nb/Al–oxide–Nb Josephson junctions. J. Appl. Phys. 55, 1419 (1984)

    Article  Google Scholar 

  53. T. Lehnert, D. Billon, C. Grassl, K.H. Gundlach, Thermal annealing properties of Nb–Al/AlOx–Nb tunnel junctions. J. Appl. Phys. 72, 3165 (1992)

    Article  Google Scholar 

  54. S. Anders, M.G. Blamire, F.I. Buchholz, D.G. Crété, R. Cristiano, P. Febvre, L. Fritzsch, A. Herr, E. Il’ichev, J. Kohlmann, J. Kunert, H.G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, et al. European roadmap on superconductive electronics—status and perspectives. Physica C: Superconductivity. 470, 2079–2126 (2010)

    Google Scholar 

  55. H.G. Meyer, L. Fritzsch, S. Anders, M. Schmelz, J. Kunert, G. Oelsner, in LTS Josephson Junctions and Circuits, ed by P. Seidel. Applied Superconductivity: Handbook on Devices and Applications (Wiley, Hoboken, 2015), pp. 281–297

    Google Scholar 

  56. H. Kroger, L.N. Smith, D.W. Jillie, Selective niobium anodization process for fabricating Josephson tunnel junctions. Appl. Phys. Lett. 39, 280–282 (1981)

    Article  Google Scholar 

  57. M. Gurvitch, M.A. Washington, H.A. Huggins, High quality refractory Josephson tunnel junctions utilizing thin aluminum layers. Appl. Phys. Lett. 42, 472–474 (1983)

    Article  Google Scholar 

  58. M. Maezawa, M. Aoyagi, H. Nakagawa, I. Kurosawa, S. Takada, Specific capacitance of Nb/AlOx/Nb Josephson junctions with critical current densities in the range of 0.1—18 kA/cm2. Appl. Phys. Lett. 66, 2134–2136 (1995)

    Article  Google Scholar 

  59. S. Anders, M. Schmelz, L. Fritzsch, R. Stolz, V. Zakosarenko, T. Schönau, H.G. Meyer, Sub-micrometer-sized, cross-type Nb–AlOx–Nb tunnel junctions with low parasitic capacitance. Supercond. Sci. Technol. 22, 064012 (2009)

    Article  Google Scholar 

  60. M. Schmelz, R. Stolz, V. Zakosarenko, S. Anders, L. Fritzsch, M. Schubert, H.G. Meyer, SQUIDs based on submicrometer-sized Josephson tunnel junctions fabricated in a cross-type technology. Supercond. Sci. Technol. 24, 015005 (2011)

    Article  Google Scholar 

  61. M. Schmelz, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders, L. Fritzsch, M. Mück, H.G. Meyer, Field-stable SQUID magnetometer with sub-fT Hz−1/2 resolution based on sub-micrometer cross-type Josephson tunnel junctions. Supercond. Sci. Technol. 24, 065009 (2011)

    Article  Google Scholar 

  62. A. Chwala, J. Kingman, R. Stolz, M. Schmelz, V. Zakosarenko, S. Linzen, F. Bauer, M. Starkloff, M. Meyer, H.G. Meyer, Noise characterization of highly sensitive SQUID magnetometer systems in unshielded environments. Supercond. Sci. Technol. 26, 035017 (2013)

    Article  Google Scholar 

  63. J. Vrba, in SQUID Gradiometers in Real Environment, ed by H. Weinstock. Squid Sensors: Fundamentals, Fabrication, and Applications (Kluwer Academic Publishers, Dordrecht/Boston/London, 1996), pp. 117–178

    Google Scholar 

  64. K.P. Humphrey, T.J. Horton, M.N. Keene, Detection of mobile targets from a moving platform using an actively shielded, adaptively balanced SQUID gradiometer. IEEE Trans. Appl. Supercond. 15, 753–756 (2005)

    Article  Google Scholar 

  65. R. Stolz, Supraleitende Quanten-interferenzdetektor-Gradiometer-Systeme für den geophysikalischen Einsatz (University Jena, Jena, 2006)

    Google Scholar 

  66. B. Muhlfelder, W. Johnson, M.W. Cromar, Double transformer coupling to a very low noise SQUID. IEEE Trans. Magn. 19, 303–307 (1983)

    Article  Google Scholar 

  67. I.K. Harvey, A precise low temperature dc ratio transformer. Rev. Sci. Instrum. 43, 1626–1629 (1972)

    Article  Google Scholar 

  68. F. Gay, F. Piquemal, G. Geneves, Ultralow noise current amplifier based on a cryogenic current comparator. Rev. Sci. Instrum. 71, 4592–4595 (2000)

    Article  Google Scholar 

  69. C. Granata, A. Vettoliere, M. Russo, An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications. Rev. Sci. Instrum. 82, 013901 (2011)

    Article  Google Scholar 

  70. J. Luomahaara, M. Kiviranta, J. Hassel, A large winding-ratio planar transformer with an optimized geometry for SQUID ammeter. Supercond. Sci. Technol. 25, 035006 (2012)

    Article  Google Scholar 

  71. V. Zakosarenko, M. Schmelz, R. Stolz, T. Schönau, L. Fritzsch, S. Anders, H.G. Meyer, Femtoammeter on the base of SQUID with thin-film flux transformer. Supercond. Sci. Technol. 25, 095014 (2012)

    Article  Google Scholar 

  72. W. Wernsdorfer, in Classical and Quantum Magnetization Reversal Studied in Nanometer-Sized Particles and Clusters. Advances in Chemical Physics (Wiley, Hoboken, 2001), pp. 99–190

    Google Scholar 

  73. W. Wernsdorfer, Molecular magnets: a long-lasting phase. Nat. Mater. 6, 174–176 (2007)

    Article  Google Scholar 

  74. P. Bushev, D. Bothner, J. Nagel, M. Kemmler, K.B. Konovalenko, A. Lörincz, K. Ilin, M. Siegel, D. Koelle, R. Kleiner, F. Schmidt-Kaler, Trapped electron coupled to superconducting devices. Eu Phys. J. D. 63, 9–16 (2011)

    Article  Google Scholar 

  75. M. Schmelz, R. Stolz, V. Zakosarenko, S. Anders, L. Fritzsch, H. Roth, H.G. Meyer, Highly sensitive miniature SQUID magnetometer fabricated with cross-type Josephson tunnel junctions. Physica C 476, 77–80 (2012)

    Article  Google Scholar 

  76. K. Hasselbach, C. Veauvy, D. Mailly, MicroSQUID magnetometry and magnetic imaging. Physica C 332, 140–147 (2000)

    Article  Google Scholar 

  77. S.K.H. Lam, D.L. Tilbrook, Development of a niobium nanosuperconducting quantum interference device for the detection of small spin populations. Appl. Phys. Lett. 82, 1078 (2003)

    Article  Google Scholar 

  78. A.G.P. Troeman, H. Derking, B. Borger, J. Pleikies, D. Veldhuis, H. Hilgenkamp, NanoSQUIDs based on niobium constrictions. Nano Lett. 7, 2152–2156 (2007)

    Article  Google Scholar 

  79. L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schurig, Measurement and noise performance of nano-superconducting-quantum-interference devices fabricated by focused ion beam. Appl. Phys. Lett. 92, 192507 (2008)

    Article  Google Scholar 

  80. D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, A scanning superconducting quantum interference device with single electron spin sensitivity. Nat Nano. 8, 639–644 (2013)

    Article  Google Scholar 

  81. J. Nagel, O.F. Kieler, T. Weimann, R. Wölbing, J. Kohlmann, A.B. Zorin, R. Kleiner, D. Koelle, M. Kemmler, Superconducting quantum interference devices with submicron Nb/HfTi/Nb junctions for investigation of small magnetic particles. Appl. Phys. Lett. 99, 032506 (2011)

    Article  Google Scholar 

  82. M. Schmelz, Y. Matsui, R. Stolz, V. Zakosarenko, T. Schönau, S. Anders, S. Linzen, H. Itozaki, H.G. Meyer, Investigation of all niobium nano-SQUIDs based on sub-micrometer cross-type Josephson junctions. Supercond. Sci. Technol. 28, 015004 (2015)

    Article  Google Scholar 

  83. D. Drung, Digital feedback loops for dc SQUIDs. Cryogenics 26, 623–627 (1986)

    Article  Google Scholar 

  84. H. Matz, D. Drung, E. Crocoll, R. Herwig, E. Kramer, M. Neuhaus, W. Jutzi, Integrated magnetometer with a digital output. Trans. Magn. IEEE 27, 2979–2982 (1991)

    Article  Google Scholar 

  85. N. Fujimaki, K. Gotoh, T. Imamura, S. Hasuo, Thermal-noise-limited performance in single-chip superconducting quantum interference devices. J. Appl. Phys. 71, 6182 (1992)

    Article  Google Scholar 

  86. T. Reich, P. Febvre, T. Ortlepp, F.H. Uhlmann, J. Kunert, R. Stolz, H.G. Meyer, Experimental study of a hybrid single flux quantum digital superconducting quantum interference device magnetometer. J. Appl. Phys. 104, 024509 (2008)

    Article  Google Scholar 

  87. T. Schönau, M. Schmelz, V. Zakosarenko, R. Stolz, M. Meyer, S. Anders, L. Fritzsch, H.G. Meyer, SQUID-based setup for the absolute measurement of the Earth’s magnetic field. Supercond. Sci. Technol. 26, 035013 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge Dr. S. Anders for careful proofreading and many stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schmelz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmelz, M., Stolz, R. (2017). Superconducting Quantum Interference Device (SQUID) Magnetometers. In: Grosz, A., Haji-Sheikh, M., Mukhopadhyay, S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-34070-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34070-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34068-5

  • Online ISBN: 978-3-319-34070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics