Skip to main content

PCR and Its Variations

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

Polymerase chain reaction (PCR) now provides the basis for many molecular tests used in the clinical microbiology laboratory. PCR amplifies sequences of nucleic acids by using primers directed to the sequence of interest. Amplicon is generated by repeated cycles of denaturation, annealing, and extension. Variations on PCR also allow for quantification of nucleic acids, detection of multiple targets, and organism typing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–50.

    Article  CAS  Google Scholar 

  2. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.

    Article  CAS  Google Scholar 

  3. Saiki RK, Gelfand DH, Stoffel S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–91.

    Article  CAS  Google Scholar 

  4. Fredricks DN, Relman DA. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin Infect Dis. 1999;29:475–86.

    Article  CAS  Google Scholar 

  5. Marlowe EM, Novak-Weekley SM, Cumpio J, et al. Evaluation of the Cepheid Xpert MTB/RIF assay for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol. 2011;49:1621–3.

    Article  CAS  Google Scholar 

  6. Rand KH, Rampersaud H, Houck HJ. A comparison of two multiplex methods for the detection of respiratory viruses: FilmArray RP and xTAG RVP. J Clin Microbiol. 2011;49:24494–2453.

    Article  Google Scholar 

  7. Selvaraju SB, Wurst M, Horvat RT, Selvarangan R. Evaluation of three analyte-specific reagents for detection and typing of herpes simplex virus in cerebrospinal fluid. Diagn Microbiol Infect Dis. 2009;63:286–91.

    Article  CAS  Google Scholar 

  8. Sire JM, Vray M, Merzouk M, et al. Comparative RNA quantification of HIV-1 group M and non-M with the Roche Cobas AmpliPrep/Cobas TaqMan HIV-1 v2.0 and Abbott real-time HIV-1 PCR assays. J Acquir Immune Defic Syndr. 2011;56:239–43.

    Article  CAS  Google Scholar 

  9. Tang YW, Procop GW, Persing DH. Molecular diagnostics of infectious diseases. Clin Chem. 1997;43:2021–38.

    CAS  PubMed  Google Scholar 

  10. Tang Y, Persing DH. Molecular detection and identification of microorganisms. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. Manual of clinical microbiology. 7th ed. Washington, DC: ASM Press; 1999.

    Google Scholar 

  11. Loeffelholz M, Deng H. PCR and its variations. In: Tang YW, Stratton CW, editors. Advanced techniques in diagnostic microbiology. 1st ed. New York: Springer; 2006.

    Google Scholar 

  12. Mullis KB. The unusual origin of the polymerase chain reaction. Sci Am. 1990;262:56–61. 64–55

    Article  CAS  Google Scholar 

  13. Balada-Llasat JM, LaRue H, Kelly C, Rigali L, Pancholi P. Evaluation of commercial ResPlex II v2.0, MultiCode-PLx, and xTAG respiratory viral panels for the diagnosis of respiratory viral infections in adults. J Clin Virol. 2011;50:42–5.

    Article  CAS  Google Scholar 

  14. Kost CB, Rogers B, Oberste MS, et al. Multicenter beta trial of the GeneXpert enterovirus assay. J Clin Microbiol. 2007;45:1081–6.

    Article  CAS  Google Scholar 

  15. Selvaraju SB, Selvarangan R. Evaluation of three influenza A and B real-time reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses. J Clin Microbiol. 2010;48:3870–5.

    Article  CAS  Google Scholar 

  16. Stevenson JB, Hymas WC, Hillyard DR. A novel capillary electrophoresis-based multiplex PCR assay for detection of respiratory pathogens. Ann Clin Lab Sci. 2011;41:33–8.

    CAS  PubMed  Google Scholar 

  17. White TJ, Madej R, Persing DH. The polymerase chain reaction: clinical applications. Adv Clin Chem. 1992;29:161–96.

    Article  CAS  Google Scholar 

  18. Collasius M, Falk H, Ciesler C, Valet G. How to build an inexpensive cyclotherm instrument for automated polymerase chain reaction. Anal Biochem. 1989;181:163–6.

    Article  CAS  Google Scholar 

  19. Wittwer CT, Fillmore GC, Hillyard DR. Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Res. 1989;17:4353–7.

    Article  CAS  Google Scholar 

  20. Wittwer CT, Hillyard DR, Ririe KM. US patent 5455175. 1995.

    Google Scholar 

  21. Martin UK, de Mello AJ, Andreas M. Chemical amplification: continuous-flow PCR on a chip. Science. 1998;280:1046–8.

    Article  Google Scholar 

  22. de los Monteros LE E, Galan JC, Gutierrez M, et al. Allele-specific PCR method based on pncA and oxyR sequences for distinguishing Mycobacterium bovis from Mycobacterium tuberculosis: intraspecific M. bovis pncA sequence polymorphism. J Clin Microbiol. 1998;36:39–242.

    Google Scholar 

  23. Mullis KB. The polymerase chain reaction in an anemic mode: how to avoid cold oligodeoxyribonuclear fusion. PCR Methods Appl. 1991;1:1–4.

    Article  CAS  Google Scholar 

  24. Chou Q, Russell M, Birch DE, Raymond J, Bloch W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 1992;20:1717–23.

    Article  CAS  Google Scholar 

  25. Bassam BJ, Caetano-Anolles G. Automated “hot start” PCR using mineral oil and paraffin wax. BioTechniques. 1993;14:30–4.

    CAS  PubMed  Google Scholar 

  26. Horton RM, Hoppe BL, Conti-Tronconi BM. AmpliGrease: “hot start” PCR using petroleum jelly. BioTechniques. 1994;16:42–3.

    CAS  PubMed  Google Scholar 

  27. Riol H, Levesque G, Murthy MR. A method of using heavy mineral oil for performing “hot-start” amplification of rare nucleic acids. Anal Biochem. 1994;221:210–2.

    Article  CAS  Google Scholar 

  28. Birch DE. Simplified hot start PCR. Nature. 1996;381:445–6.

    Article  CAS  Google Scholar 

  29. Kebelmann-Betzing C, Seeger K, Dragon S, et al. Advantages of a new Taq DNA polymerase in multiplex PCR and time-release PCR. BioTechniques. 1998;24:154–8.

    Article  CAS  Google Scholar 

  30. Kellogg DE, Rybalkin I, Chen S, et al. TaqStart Antibody’: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase. BioTechniques. 1994;16:1134–8.

    CAS  PubMed  Google Scholar 

  31. Rasmussen HN, Rasmussen OF, Andersen JK, Olsen JE. Specific detection of pathogenic Yersinia enterocolitica by two-step PCR using hot-start and DMSO. Mol Cell Probes. 1994;8:99–108.

    Article  CAS  Google Scholar 

  32. Pang J, Modlin J, Yolken R. Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Mol Cell Probes. 1992;6:251–6.

    Article  CAS  Google Scholar 

  33. Udaykumar EJS, Hewlett IK. A novel method employing UNG to avoid carry-over contamination in RNA-PCR. Nucleic Acids Res. 1993;21:3917–8.

    Article  CAS  Google Scholar 

  34. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991;19:4008.

    Article  CAS  Google Scholar 

  35. Shin J-H, Lee S-E, Kim TS, Ma D-W, Chai J-Y, Shin E-H. Multiplex-touchdown PCR to simultaneously detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of Traveler’s diarrhea. Korean J Parasitol. 2016;54:631–6.

    Article  CAS  Google Scholar 

  36. Wang MY, Geng JL, Chen YJ, Song Y, Sun M, Liu HZ, Hu CJ. Direct detection of mecA, blaSHV , blaCTX-M , blaTEM and blaOXA genes from positive blood culture bottles by multiplex-touchdown PCR assay. Lett Appl Microbiol. 2017;64:138–43.

    Article  CAS  Google Scholar 

  37. Bhumiratana A, Siriphap A, Khamsuwan N, Borthong J, Chonsin K, Sutheinkul O. O serogroup-specific touchdown-multiplex polymerase chain reaction for detection and identification of Vibrio cholerae O1, O139, and Non-O1/Non-O139. Biochem Res Int. 2014;2014:295421.

    Article  Google Scholar 

  38. Barnard E, Nagy I, Hunyadkürti J, Patrick S, McDowell A. Multiplex touchdown PCR for rapid typing of the opportunistic pathogen Propionibacterium acnes. J Clin Microbiol. 2015;53:1149–55.

    Article  CAS  Google Scholar 

  39. Moe CL, Gentsch J, Ando T, et al. Application of PCR to detect Norwalk virus in fecal specimens from outbreaks of gastroenteritis. J Clin Microbiol. 1994;32:642–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Haqqi TM, Sarkar G, David CS, Sommer SS. Specific amplification with PCR of a refractory segment of genomic DNA. Nucleic Acids Res. 1988;16:11844.

    Article  CAS  Google Scholar 

  41. Schmidt B, Muellegger RR, Stockenhuber C, et al. Detection of Borrelia burgdorferi-specific DNA in urine specimens from patients with erythema migrans before and after antibiotic therapy. J Clin Microbiol. 1996;34:1359–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Whelen AC, Felmlee TA, Hunt JM, et al. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using single-tube heminested PCR. J Clin Microbiol. 1995;33:556–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988;16:11141–56.

    Article  CAS  Google Scholar 

  44. Rossister BJF, Grompe M, Caskey CT. In: MJ MP, Quirke P, Taylor GR, editors. PCR. A practical approach. New York: Oxford University Press; 1991.

    Google Scholar 

  45. Bej AK, Mahbubani MH, Miller R, DiCesare JL, Haff L, Atlas RM. Multiplex PCR amplification and immobilized capture probes for detection of bacterial pathogens and indicators in water. Mol Cell Probes. 1990;4:353–65.

    Article  CAS  Google Scholar 

  46. Geha DJ, Uhl JR, Gustaferro CA, Persing DH. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol. 1994;32:1768–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Roberts TC, Storch GA. Multiplex PCR for diagnosis of AIDS-related central nervous system lymphoma and toxoplasmosis. J Clin Microbiol. 1997;35:268–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS One. 2011;6:e26047.

    Article  CAS  Google Scholar 

  49. Dunbar SA. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta. 2006;363:71–82.

    Article  CAS  Google Scholar 

  50. Larrick JW. Message amplification phenotyping (MAPPing) – principles, practice and potential. Trends Biotechnol. 1992;10:146–52.

    Article  CAS  Google Scholar 

  51. Myers TW, Gelfand DH. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry. 1991;30:7661–6.

    Article  CAS  Google Scholar 

  52. Boyer N, Marcellin P. Pathogenesis, diagnosis and management of hepatitis C. J Hepatol. 2000;32:98–112.

    Article  CAS  Google Scholar 

  53. Clarke JR, McClure MO. HIV-1 viral load testing. J Infect. 1999;38:141–6.

    Article  CAS  Google Scholar 

  54. Mylonakis E, Paliou M, Rich JD. Plasma viral load testing in the management of HIV infection. Am Fam Physician 2001;63:483–490, 495–486.

    Google Scholar 

  55. Hodinka RL. The clinical utility of viral quantitation using molecular methods. Clin Diagn Virol. 1998;10:25–47.

    Article  CAS  Google Scholar 

  56. Jung R, Soondrum K, Neumaier M. Quantitative PCR. Clin Chem Lab Med. 2000;38:833–6.

    CAS  PubMed  Google Scholar 

  57. Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. Clin Chem Lab Med. 1998;36:255–69.

    Article  CAS  Google Scholar 

  58. Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY). 1992;10:413–7.

    Article  CAS  Google Scholar 

  59. Nolte FS, Caliendo AM. Molecular microbiology. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, editors. Manual of clinical microbiology. 10th ed. Washington, D C: ASM Press; 2011. p. 27–59.

    Google Scholar 

  60. Whiley DM, Mackay IM, Syrmis MW, Witt MJ, Sloots TP. Detection and differentiation of herpes simplex virus types 1 and 2 by a duplex LightCyler PCR that incorporates an internal control PCR reaction. J Clin Virol. 2004;30:32–8.

    Article  CAS  Google Scholar 

  61. Zhong Q, Bhattacharya S, Kotsopoulos S, et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip. 2011;11:2167–74.

    Article  CAS  Google Scholar 

  62. Bateman AC, Greninger AL, Atienza EE, Limaye AP, Jerome KR, Cook L. Quantification of BK virus standards by quantitative real-time PCR and droplet digital PCR is confounded by multiple virus populations in the WHO BKV international standard. Clin Chem. 2017;63:761–9.

    Article  CAS  Google Scholar 

  63. Hayden RT, Gu Z, Sam SS, Sun Y, Tang L, Pounds S, Caliendo AM. Comparative evaluation of three commercial quantitative cytomegalovirus standards by use of digital and real-time PCR. J Clin Microbiol. 2015;53:1500–5.

    Article  CAS  Google Scholar 

  64. Sedlak RH, Nguyen T, Palileo I, Jerome KR, Kuypers J. Superiority of digital reverse transcription-PCR (RT-PCR) over real-time RT-PCR for quantitation of highly divergent human rhinoviruses. J Clin Microbiol. 2017;55:442–9.

    Article  CAS  Google Scholar 

  65. Fernandez-Cuenca F. Applications of PCR techniques for molecular epidemiology of infectious diseases. Enferm Infecc Microbiol Clin. 2004;22:355–60.

    Article  Google Scholar 

  66. Olive DM, Bean P. Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol. 1999;37:1661–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Grattard F, Berthelot P, Reyrolle M, Ros A, Etienne J, Pozzetto B. Molecular typing of nosocomial strains of Legionella pneumophila by arbitrarily primed PCR. J Clin Microbiol. 1996;34:1595–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. MacGowan AP, O'Donaghue K, Nicholls S, McLauchlin J, Bennett PM, Reeves DS. Typing of Listeria spp. by random amplified polymorphic DNA (RAPD) analysis. J Med Microbiol. 1993;38:322–7.

    Article  CAS  Google Scholar 

  69. Matsui C, Pereira P, Wang CK, et al. Extent of laminin-5 assembly and secretion effect junctional epidermolysis bullosa phenotype. J Exp Med. 1998;187:1273–83.

    Article  CAS  Google Scholar 

  70. van Belkum A, Kluytmans J, van Leeuwen W, et al. Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol. 1995;33:1537–47.

    PubMed  PubMed Central  Google Scholar 

  71. Welsh EA, Clark HH, Epstein SZ, Reveille JD, Duvic M. Human leukocyte antigen-DQB1*03 alleles are associated with alopecia areata. J Invest Dermatol. 1994;103:758–63.

    Article  CAS  Google Scholar 

  72. Woods JP, Kersulyte D, Tolan RW Jr, Berg CM, Berg DE. Use of arbitrarily primed polymerase chain reaction analysis to type disease and carrier strains of Neisseria meningitidis isolated during a university outbreak. J Infect Dis. 1994;169:1384–9.

    Article  CAS  Google Scholar 

  73. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–31.

    Article  CAS  Google Scholar 

  74. Wise MG, Siragusa GR, Plumbee J, Healy M, Cary PJ, Seal BS. Predicting Salmonella enterica serotypes by repetitive sequence-based PCR. J Microbiol Methods. 2009;76:18–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor A. Powell .

Editor information

Editors and Affiliations

Appendix: Primer Design Resources

Appendix: Primer Design Resources

There are a number of primer design programs and related resources available for free on the World Wide Web. The following is a brief sampling of primer design programs. (URLs accessed on May 21, 2017).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Powell, E.A., Loeffelholz, M. (2018). PCR and Its Variations. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-33900-9_16

Download citation

Publish with us

Policies and ethics