Skip to main content

The Observational Status of Galileon Gravity After Planck

  • Chapter
  • First Online:
Structure Formation in Modified Gravity Cosmologies

Part of the book series: Springer Theses ((Springer Theses))

Abstract

To fully assess the observational viability of any cosmological model we must allow all of its parameters to vary within the observational constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The content in this chapter is based on the articles Barreira et al. “Parameter space in Galileon gravity models”, Phys. Rev. D 87, 103511, Published 15 May 2013, http://dx.doi.org/10.1103/PhysRevD.87.103511 (Ref. [1]) and Barreira et al. “The observational status of Galileon gravity after Planck”, Journal of Cosmology and Astroparticle Physics, Volume 2014, Published 27 August 2014, © IOP Publishing Ltd. Reproduced with permission. All rights reserved, http://dx.doi.org/10.1088/1475-7516/2014/08/059 (Ref. [2]).

  2. 2.

    This model is the best-fitting base Cubic Galilon model to the PLB dataset, but what is important in the discussion here is the impact of the initial conditions, regardless of which exact model parameters we consider.

  3. 3.

    In this chapter, we shall present results using the more recent CMB data from the Planck satellite, but for the purpose of discussing the scaling degeneracy here we can use these WMAP9 results.

  4. 4.

    In Ref. [43], without including the WiggleZ measurements in the BAO data, it was found that \(\chi ^2_{BAO} \sim 8\), for 3 dof.

  5. 5.

    In terms of the \(\Psi \) and \(\Phi \) potentials of the linearly perturbed FRW line element in the Newtonian gauge \(\mathrm{d}s^2 = \left( 1 + 2\Psi \right) \mathrm{d}t^2 - \left( 1 - 2\Phi \right) \mathrm{d}{x}^i\mathrm{d}{x}_i\), one has \(\phi = \left( \Psi + \Phi \right) /2\).

  6. 6.

    The q term is subdominant on small length scales (large k) and for matter \(\Pi = 0\). In this case, one then recovers the standard Poisson equation \(-k^2\phi = 4\pi G a^2\chi \).

  7. 7.

    To first approximation, we assume also that all of the matter components (baryons, CDM and massive neutrinos) contribute equally to \(\delta \).

  8. 8.

    We note that this observational tension arises when one considers the background evolution of the Galileon field when making a prediction for the Solar System. If \(\dot{\bar{\varphi }} = 0\), then the tension goes away. In Chap. 6, we shall discuss this more indepth when we encounter a similar tension for Nonlocal gravity.

References

  1. Barreira A, Li B, Sanchez A, Baugh CM, Pascoli S (2013) The parameter space in Galileon gravity models. Phys Rev D87:103511 arXiv:1302.6241

  2. Barreira A, Li B, Baugh C, Pascoli S (2014) The observational status of Galileon gravity after Planck. arXiv:1406.0485

  3. Ade PAR et al (2013) Planck 2013 results XV. CMB power spectra and likelihood. arXiv:1303.5075

  4. Ade PAR et al (2013) Planck 2013 results XVI. Cosmological parameters. arXiv:1303.5076

  5. Lewis Antony, Bridle Sarah (2002) Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys Rev D 66:103511. arXiv:astro-ph/0205436

  6. An Lm, Brooks Stephen, Gelman Andrew (1998) Stephen brooks and andrew gelman. J Comput Graph Stat 7:434–455

    Google Scholar 

  7. De Felice A, Tsujikawa S (2011) Generalized Galileon cosmology. Phys Rev D84:124029. arXiv:1008.4236

  8. Neveu J, Ruhlmann-Kleider V, Conley A, Palanque-Delabrouille N, Astier P et al (2013) Experimental constraints on the uncoupled Galileon model from SNLS3 data and other cosmological probes. arXiv:1302.2786

  9. He J-H (2013) Weighing neutrinos in \(f(R)\) gravity. Phys Rev D 88:103523. arXiv:1307.4876

  10. Motohashi H, Starobinsky AA, Yokoyama J (2013) Cosmology based on f(R) gravity admits 1 eV sterile neutrinos. Phys Rev Lett 110(12):121302 arXiv:1203.6828

  11. Baldi M, Villaescusa-Navarro F, Viel M, Puchwein E, Springel V et al (2013) Cosmic degeneracies I: joint N-body simulations of modified gravity and massive neutrinos. arXiv:1311:2588

  12. Hinshaw G, Larson D, Komatsu E, Spergel DN, Bennett CL et al (2012) Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. arXiv:1212.5226

  13. Guy J, Sullivan M, Conley A, Regnault N, Astier P et al (2010) The supernova legacy survey 3-year sample: type ia supernovae photometric distances and cosmological constraints. Astron Astrophys 523:A7. arXiv:1010.4743

    Google Scholar 

  14. Beutler F, Blake C, Colless M, Heath Jones D, Staveley-Smith L et al (2011) The 6dF galaxy survey: baryon acoustic oscillations and the local hubble constant. Mon Not Roy Astron Soc 416:3017–3032. arXiv:1106.3366

    Google Scholar 

  15. Reid BA, Samushia L, White M, Percival WJ, Manera M et al (2012) The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: measurements of the growth of structure and expansion rate at z \(=\) 0.57 from anisotropic clustering. arXiv:1203.6641

  16. Reid BA et al (2010) Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon Not Roy Astron Soc 404:60–85. arXiv:0907.1659

  17. Appleby SA, Linder EV (2012) Galileons on Trial. arXiv:1204.4314

  18. Ade PAR et al (2013) Planck 2013 results XVII. Gravitational lensing by large-scale structure. arXiv:1303.5077

  19. Padmanabhan N, Xiaoying X, Eisenstein DJ, Scalzo R, Cuesta AJ et al (2012) A 2 per cent distance to \(z=0.35\) by reconstructing baryon acoustic oscillations - I. Methods and application to the sloan digital sky survey. Mon Not Roy Astron Soc 427(3):2132–2145. arXiv:1202.0090

  20. Anderson L, Aubourg E, Bailey S, Bizyaev D, Blanton M et al (2013) The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon Not Roy Astron Soc 427(4):3435–3467. arXiv:1203.6594

  21. Blake C, Kazin E, Beutler F, Davis T, Parkinson D et al (2011) The WiggleZ dark energy survey: mapping the distance-redshift relation with baryon acoustic oscillations. Mon Not Roy Astron Soc 418:1707–1724. arXiv:1108.2635

    Google Scholar 

  22. Barreira A, Li B, Baugh CM, Pascoli S (2012) Linear perturbations in Galileon gravity models. Phys Rev D86:124016. arXiv:1208.0600

  23. De Felice A, Kase R, Tsujikawa S (2011) Matter perturbations in Galileon cosmology. Phys Rev D83:043515. arXiv:1011.6132

  24. Appleby SA, Linder EV (2012) The paths of gravity in Galileon cosmology. JCAP 1203:043. arXiv:1112.1981

    Google Scholar 

  25. Okada H, Totani T, Tsujikawa S (2012) Constraints on f(R) theory and Galileons from the latest data of galaxy redshift surveys. arXiv:1208.4681

  26. Brax P, van de Bruck C, Davis A-C, Shaw D (2010) The dilaton and modified gravity. Phys Rev D82:063519. arXiv:1005.3735

  27. Brax P, van de Bruck C, Davis A-C, Li B, Shaw DJ (2011) Nonlinear structure formation with the environmentally dependent dilaton. Phys Rev D83:104026. arXiv:1102.3692

  28. Brax P, Davis A-C, Li B, Winther HA, Zhao G-B (2012) Systematic simulations of modified gravity: symmetron and dilaton models. arXiv:1206:3568

  29. Jennings E, Baugh CM, Li B, Zhao G-B, Koyama K (2012) Redshift space distortions in f(R) gravity. arXiv:1205.2698

  30. Li B, Hellwing WA, Koyama K, Zhao G-B, Jennings E et al (2012) The nonlinear matter and velocity power spectra in f(R) gravity. arXiv:1206.4317

  31. Nesseris S, De Felice A, Tsujikawa S (2010) Observational constraints on Galileon cosmology. Phys Rev D82:124054. arXiv:1010.0407

  32. Alcock C, Paczynski B (1979) An evolution free test for non-zero cosmological constant. Nature 281:358

    Article  ADS  Google Scholar 

  33. Blake C, Brough S, Colless M, Contreras C, Couch W et al (2011) The WiggleZ dark energy survey: the growth rate of cosmic structure since redshift z \(=\) 0.9. Mon Not Roy Astron Soc 415:2876. arXiv:1104.2948

  34. Neveu J, Ruhlmann-Kleider V, Astier P, Besanon M, Conley A et al (2014) First experimental constraints on the disformally-coupled Galileon model. arXiv:1403:0854

  35. Riess AG, Macri L, Casertano S, Lampeitl H, Ferguson HC et al (2011) A 3 space telescope and wide field camera 3. Astrophys J 730:119. arXiv:1103.2976

  36. Humphreys EML, Reid MJ, Moran JM, Greenhill LJ, Argon AL (2013) Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. Astrophys J 775:13. arXiv:1307.6031

    Google Scholar 

  37. Sotiriou TP, Faraoni V. f(R) theories of gravity. Rev Mod Phys 82:451–497. arXiv:805.1726

  38. Reid BA et al (2010) Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon Not Roy Astron Soc 404:60–85. arXiv:0907.1659

  39. Song Y-S, Percival WJ (2009) Reconstructing the history of structure formation using redshift distortions. J Cosmol Astropart Phys 2009(10):004. arXiv:0807.0810

    Google Scholar 

  40. Beutler F, Blake C, Colless M, Heath Jones D, Staveley-Smith L et al (2012) The 6dF galaxy survey: z \(\approx 0\) measurement of the growth rate and \(\sigma _8\). Mon Not Roy Astron Soc 423: 3430–3444. arXiv:1204.4725

  41. Samushia L, Percival WJ, Raccanelli A (2012) Interpreting large-scale redshift-space distortion measurements. Mon Not Roy Astron Soc 420(3):2102–2119. arXiv:1102.1014

    Google Scholar 

  42. Blake C, Glazebrook K, Davis T, Brough S, Colless M et al (2011) The WiggleZ dark energy survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae. Mon Not Roy Astron Soc 418:1725–1735. arXiv:1108.2637

    Google Scholar 

  43. Barreira A, Li B, Baugh C, Pascoli S (2014) \(\nu \)Galileon: modified gravity with massive neutrinos as a testable alternative to \(\Lambda \)CDM. arXiv:1404.1365

  44. Ade PAR et al (2013) Planck 2013 results XIX. The integrated Sachs-Wolfe effect. arXiv:1303.5079

  45. Granett BR, Neyrinck MC, Szapudi I (2008) An imprint of super-structures on the microwave background due to the integrated Sachs-Wolfe effect. Astrophys J 683:L99–L102. arXiv:0805.3695

    Google Scholar 

  46. Granett BR, Neyrinck MC, Szapudi I (2008) Dark energy detected with supervoids and superclusters. ArXiv e-prints arXiv:0805.2974

  47. Sutter PM, Lavaux G, Wandelt BD, Weinberg DH (2012) A public void catalog from the SDSS DR7 galaxy redshift surveys based on the watershed transform. Astrophys J 761:44. arXiv:1207.2524

    Google Scholar 

  48. Pan DC, Vogeley MS, Hoyle F, Choi Y-Y, Park C (2012) Cosmic voids in sloan digital sky survey data release 7. Mon Not Roy Astron Soc 421:926–934. arXiv:1103.4156

    Google Scholar 

  49. Hernandez-Monteagudo C, Smith RE (2012) On the signature of nearby superclusters and voids in the integrated Sachs-Wolfe effect. arXiv:1212.1174

  50. Cai Y-C, Neyrinck MC, Szapudi I, Cole S, Frenk CS (2014) A possible cold imprint of voids on the microwave background radiation. Astrophys J 786:110. arXiv:1301.6136

    Google Scholar 

  51. Finelli F, Garcia-Bellido J, Kovacs A, Paci F, Szapudi I (2014) A supervoid imprinting the cold spot in the cosmic microwave background. arXiv:1405.1555

  52. Szapudi I, Kovcs A, Granett BR, Frei Z, Silk J et al (2014) Detection of a supervoid aligned with the cold spot of the cosmic microwave background. arXiv:1405.1566

  53. Boughn S, Crittenden R (2004) A correlation between the cosmic microwave background and large-scale structure in the Universe. Nature 427:45–47. arXiv:astro-ph/0305001

    Google Scholar 

  54. Ho S, Hirata C, Padmanabhan N, Seljak U, Bahcall N (2008) Correlation of CMB with large-scale structure I. Integrated Sachs-Wolfe tomography and cosmological implications. Phys Rev D 78(4):043519. arXiv:0801.0642

  55. Giannantonio T, Crittenden R, Nichol R, Ross AJ (2012) The significance of the integrated Sachs-Wolfe effect revisited. Mon Not Roy Astron Soc 426:2581–2599. arXiv:1209.2125

    Google Scholar 

  56. Song Y-S, Peiris H, Hu W (2007) Cosmological constraints on f(R) acceleration models. Phys Rev D76:063517. arXiv:0706.2399

  57. Giannantonio T, Song Y-S, Koyama K (2008) Detectability of a phantom-like braneworld model with the integrated Sachs-Wolfe effect. Phys Rev D78:044017. arXiv:0803.2238

  58. Francis CL, Peacock JA (2010) An estimate of the local ISW signal, and its impact on CMB anomalies. Mon Not Roy Astron Soc 406:14. arXiv:0909.2495

  59. Francis CL, Peacock JA (2010) ISW measurements with photometric redshift surveys: 2MASS results and future prospects. Mon Not Roy Astron Soc 406:2. arXiv:0909.2494

  60. Hernandez-Monteagudo C (2009) Revisiting the WMAP - NVSS angular cross correlation. A skeptic view. arXiv:0909.4294

  61. Sawangwit U, Shanks T, Cannon RD, Croom SM, Ross NP et al (2010) Cross-correlating WMAP5 with 1.5 million LRGs: a new test for the ISW effect. Mon Not Roy Astron Soc 402:2228. arXiv:0911.1352

    Google Scholar 

  62. Lopez-Corredoira M, Sylos Labini F, Betancort-Rijo J (2010) Absence of significant cross-correlation between WMAP and SDSS. Astron Astrophys 513:A3. arXiv:1001.4000

    Google Scholar 

  63. Efstathiou G (2013) H0 Revisited. arXiv:1311.3461

  64. Heymans C, Grocutt E, Heavens A, Kilbinger M, Kitching TD et al (2013) CFHTLenS tomographic weak lensing cosmological parameter constraints: mitigating the impact of intrinsic galaxy alignments. arXiv:1303.1808

  65. Ade PAR et al (2013) Planck 2013 results XX. Cosmology from Sunyaev-Zeldovich cluster counts. arXiv:1303.5080

  66. Wyman M, Rudd DH, Ali Vanderveld R, Hu W (2014) \(\nu \Lambda \)CDM: neutrinos help reconcile Planck with the local Universe. Phys Rev Lett 112:051302. arXiv:1307.7715

  67. Battye RA, Moss A (2014) Evidence for massive neutrinos from CMB and lensing observations. Phys Rev Lett 112:051303. arXiv:1308.5870

  68. Drexlin G, Hannen V, Mertens S, Weinheimer C (2013) Current direct neutrino mass experiments. Adv High Energy Phys 2013:293986. arXiv:1307.0101

    Google Scholar 

  69. Kraus Ch, Bornschein B, Bornschein L, Bonn J, Flatt B et al (2005) Final results from phase II of the Mainz neutrino mass search in tritium beta decay. Eur Phys J C40:447–468. arXiv:hep-ex/0412056

  70. Aseev VN et al (2011) An upper limit on electron antineutrino mass from Troitsk experiment. Phys Rev D84:112003. arXiv:1108.5034

  71. http://www.katrin.kit.edu/

  72. Vergados JD, Ejiri H, Simkovic F (2012) Theory of neutrinoless double beta decay. Rept Prog Phys 75:106301. arXiv:1205.0649

    Google Scholar 

  73. Jennings E, Baugh CM, Pascoli S (2011) Modelling redshift space distortions in hierarchical cosmologies. MNRAS 410:2081–2094. arXiv:1003.4282

  74. Wyman M, Jennings E, Lima M (2013) Simulations of Galileon modified gravity: clustering statistics in real and redshift space. Phys Rev D88:084029. arXiv:1303.6630

  75. Babichev E, Deffayet C, Esposito-Farese G (2011) Constraints on shift-symmetric scalar-tensor theories with a Vainshtein mechanism from bounds on the time variation of G. Phys Rev Lett 107:251102. arXiv:1107.1569

  76. Kimura R, Kobayashi T, Yamamoto K (2012) Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory. Phys Rev D85:024023. arXiv:1111.6749

  77. Barreira A, Li B, Baugh CM, Pascoli S (2013) Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias. JCAP, 1311:056. arXiv:1308.3699

    Google Scholar 

  78. Barreira A, Li B, Hellwing WA, Lombriser L, Baugh CM et al (2014) Halo model and halo properties in Galileon gravity cosmologies. arXiv:1401:1497

  79. Williams JG, Turyshev SG, Boggs DH (2004) Progress in lunar laser ranging tests of relativistic gravity. Phys Rev Lett 93:261101. arXiv:gr-qc/0411113

  80. De Felice A, Tsujikawa S (2012) Conditions for the cosmological viability of the most general scalar-tensor theories and their applications to extended Galileon dark energy models. JCAP 1202:007. arXiv:1110.3878

    Google Scholar 

  81. Challinor A, Lasenby A (1999) Cosmic microwave background anisotropies in the CDM model: a covariant and gauge invariant approach. Astrophys J 513:1–22. arXiv:astro-ph/9804301

  82. Challinor A (2000) Microwave background anisotropies from gravitational waves: the (1+3) covariant approach. Class Quant Grav 17:871–889. arXiv:astro-ph/9906474

    Google Scholar 

  83. Challinor A (2000) Microwave background polarization in cosmological models. Phys Rev D 62:043004. arXiv:astro-ph/9911481

  84. Ade PAR et al (2014) Detection of B-mode polarization at degree angular scales by BICEP2. Phys Rev Lett 112:241101. arXiv:1403.3985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Barreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barreira, A. (2016). The Observational Status of Galileon Gravity After Planck. In: Structure Formation in Modified Gravity Cosmologies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-33696-1_3

Download citation

Publish with us

Policies and ethics