Skip to main content

Kinetic Monte Carlo Modeling of Nanomechanics in Amorphous Systems

  • Chapter
  • First Online:
Multiscale Materials Modeling for Nanomechanics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 245))

Abstract

The nanomechanics of amorphous systems span significant time and length scales that are difficult to access. Shear transformation zone (STZ) dynamics is a mesoscale approach that combines the kinetic Monte Carlo (kMC) algorithm with coarse-graining techniques to bridge the relevant time and length scales associated with deformation in these systems. This work discusses the fundamental details of these scale bridging techniques as well as their specific application in the STZ dynamics framework. The modeling framework is applied in various scenarios to demonstrate the versatility of the mesoscale approach. These applications include: (1) simulating the overall deformation behaviors of amorphous metals, (2) investigating the influence of thermomechanical processing by tracking a structural state variable, excess free volume, (3) assessing the nanomechanics that lead to shear banding in amorphous metals, (4) elucidating structural evolution that occurs during nanoindentation, and (5) examining the influence of various microstructural factors that influence the mechanical properties of metallic glass matrix (MGM) composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007)

    Article  Google Scholar 

  2. D. Rodney, A. Tanguy, D. Vandembroucq, Modeling the mechanics of amorphous solids at different length scale and time scale. Model. Simul. Mater. Sci. Eng. 19, 083001 (2011)

    Article  Google Scholar 

  3. A.S. Argon, Plastic deformation in metallic glasses. Acta Metall. Mater. 27, 47–58 (1979)

    Article  Google Scholar 

  4. E.R. Homer, D. Rodney, C.A. Schuh, Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal. Phys. Rev. B. 81, 064204 (2010)

    Article  Google Scholar 

  5. A. Tanguy, F. Leonforte, J.-L. Barrat, Plastic response of a 2D Lennard-Jones amorphous solid: detailed analysis of the local rearrangements at very slow strain rate. Eur. Phys. J. E. 20, 355–364 (2006)

    Article  Google Scholar 

  6. C.E. Maloney, A. Lemaitre, Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006)

    Article  Google Scholar 

  7. F. Abdeljawad, M. Haataja, Continuum modeling of bulk metallic glasses and composites. Phys. Rev. Lett. 105, 125503 (2010)

    Article  Google Scholar 

  8. L. Anand, C. Su, A constitutive theory for metallic glasses at high homologous temperatures. Acta Mater. 55, 3735–3747 (2007)

    Article  Google Scholar 

  9. L. Anand, C. Su, A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Solids 53, 1362–1396 (2005)

    Article  Google Scholar 

  10. C. Su, L. Anand, Plane strain indentation of a Zr-based metallic glass: experiments and numerical simulation. Acta Mater. 54, 179–189 (2006)

    Article  Google Scholar 

  11. S. Yip, M.P. Short, Multiscale materials modelling at the mesoscale. Nat. Mater. 12, 774–777 (2013)

    Article  Google Scholar 

  12. S. Yip (ed.), Handbook of Materials Modeling (Springer, Dordrecht, 2005)

    Google Scholar 

  13. A.F. Voter, Introduction to the kinetic Monte Carlo method, in Radiation Effects in Solids, ed. by K.E. Sickafus, E.A. Kotomin, B.P. Uberuaga (Springer, Dordrecht, 2007), pp. 1–23

    Chapter  Google Scholar 

  14. E.R. Homer, C.A. Schuh, Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 57, 2823–2833 (2009)

    Article  Google Scholar 

  15. C. Domain, C.S. Becquart, L. Malerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J. Nucl. Mater. 335, 121–145 (2004)

    Article  Google Scholar 

  16. C.S. Deo, D.J. Srolovitz, W. Cai, V.V. Bulatov, Kinetic Monte Carlo method for dislocation migration in the presence of solute. Phys. Rev. B 71, 014106 (2005)

    Article  Google Scholar 

  17. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)

    Article  Google Scholar 

  18. Y. Mishin, M. Asta, J. Li, Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 58, 1117–1151 (2010)

    Article  Google Scholar 

  19. R. Devanathan, L. Van Brutzel, A. Chartier, C. Gueneau, A.E. Mattsson, V. Tikare, T. Bartel, T. Besmann, M. Stan, P. Van Uffelen, Modeling and simulation of nuclear fuel materials. Energy Environ. Sci. 3, 1406–1426 (2010)

    Article  Google Scholar 

  20. P. Zhao, J. Li, Y. Wang, Heterogeneously randomized STZ model of metallic glasses: softening and extreme value statistics during deformation. Int J Plast 40, 1–22 (2013)

    Article  Google Scholar 

  21. Y. Chen, C.A. Schuh, A coupled kinetic Monte Carlo–finite element mesoscale model for thermoelastic martensitic phase transformations in shape memory alloys. Acta Mater. 83, 431–447 (2015)

    Article  Google Scholar 

  22. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, San Diego, 2002)

    Google Scholar 

  23. V.V. Bulatov, A.S. Argon, A stochastic model for continuum elasto-plastic behavior: I. Numerical approach and strain localization. Model. Simul. Mater. Sci. Eng. 2, 167–184 (1994)

    Article  Google Scholar 

  24. V.V. Bulatov, A.S. Argon, A stochastic model for continuum elasto-plastic behavior: II. A study of the glass-transition and structural relaxation. Model. Simul. Mater. Sci. Eng. 2, 185–202 (1994)

    Article  Google Scholar 

  25. V.V. Bulatov, A.S. Argon, A stochastic model for continuum elasto-plastic behavior: III. Plasticity in ordered versus disordered solids. Model. Simul. Mater. Sci. Eng. 2, 203–222 (1994)

    Article  Google Scholar 

  26. D.J. Srolovitz, V. Vitek, T. Egami, An atomistic study of deformation of amorphous metals. Acta Metall. Mater. 31, 335–352 (1983)

    Article  Google Scholar 

  27. C.E. Maloney, A. Lemaitre, Universal breakdown of elasticity at the onset of material failure. Phys. Rev. Lett. 93, 195501 (2004)

    Article  Google Scholar 

  28. D. Rodney, C.A. Schuh, Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009)

    Article  Google Scholar 

  29. E.R. Homer, C.A. Schuh, Three-dimensional shear transformation zone dynamics model for amorphous metals. Model. Simul. Mater. Sci. Eng. 18, 065009 (2010)

    Article  Google Scholar 

  30. T. Mura, Micromechanics of Defects in Solids (Kluwer, Dordrecht, 1991)

    Google Scholar 

  31. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  32. E.B. Tadmor, R.E. Miller, Modeling Materials (Cambridge University Press, New York, 2011)

    Book  Google Scholar 

  33. R. Malek, N. Mousseau, Dynamics of Lennard-Jones clusters: a characterization of the activation-relaxation technique. Phys. Rev. E 62, 7723–7728 (2000)

    Article  Google Scholar 

  34. E. Cancès, F. Legoll, M.C. Marinica, K. Minoukadeh, F. Willaime, Some improvements of the activation-relaxation technique method for finding transition pathways on potential energy surfaces. J. Chem. Phys. 130, 114711 (2009)

    Article  Google Scholar 

  35. D. Rodney, C.A. Schuh, Yield stress in metallic glasses: the jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. Phys. Rev. B 80, 184203 (2009)

    Article  Google Scholar 

  36. W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005)

    Article  Google Scholar 

  37. W.H. Wang, P. Wen, D.Q. Zhao, M.X. Pan, R.J. Wang, Relationship between glass transition temperature and Debye temperature in bulk metallic glasses. J. Mater. Res. 18, 2747–2751 (2003)

    Article  Google Scholar 

  38. M. Zink, K. Samwer, W.L. Johnson, S.G. Mayr, Plastic deformation of metallic glasses: size of shear transformation zones from molecular dynamics simulations. Phys. Rev. B 73, 172203 (2006)

    Article  Google Scholar 

  39. X.L. Fu, Y. Li, C.A. Schuh, Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement. J. Mater. Res. 22, 1564–1573 (2007)

    Article  Google Scholar 

  40. C.E. Packard, E.R. Homer, N. Al-Aqeeli, C.A. Schuh, Cyclic hardening of metallic glasses under Hertzian contacts: experiments and STZ dynamics simulations. Philos. Mag. 90, 1373–1390 (2010)

    Article  Google Scholar 

  41. Y. Shi, M.L. Falk, Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317–4324 (2007)

    Article  Google Scholar 

  42. M.L. Falk, Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Phys. Rev. B 60, 7062–7070 (1999)

    Article  Google Scholar 

  43. F. Spaepen, Homogeneous flow of metallic glasses: a free volume perspective. Scr. Mater. 54, 363–367 (2006)

    Article  Google Scholar 

  44. T. Egami, Formation and deformation of metallic glasses: atomistic theory. Intermetallics 14, 882–887 (2006)

    Article  Google Scholar 

  45. L. Li, N. Wang, F. Yan, Transient response in metallic glass deformation: a study based on shear transformation zone dynamics simulations. Scr. Mater. 80, 25–28 (2014)

    Article  Google Scholar 

  46. C.E. Packard, C.A. Schuh, Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55, 5348–5358 (2007)

    Article  Google Scholar 

  47. A.C. Lund, C.A. Schuh, Critical length scales for the deformation of amorphous metals containing nanocrystals. Philos. Mag. Lett. 87, 603–611 (2007)

    Article  Google Scholar 

  48. Y. Wang, J. Li, A.V. Hamza, T.W. Barbee, Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155–11160 (2007)

    Article  Google Scholar 

  49. X.L. Fu, Y. Li, C.A. Schuh, Mechanical properties of metallic glass matrix composites: effects of reinforcement character and connectivity. Scr. Mater. 56, 617–620 (2007)

    Article  Google Scholar 

  50. T.G. Nieh, J. Wadsworth, Bypassing shear band nucleation and ductilization of an amorphous-crystalline nanolaminate in tension. Intermetallics 16, 1156–1159 (2008)

    Article  Google Scholar 

  51. D.C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085–1089 (2008)

    Article  Google Scholar 

  52. S. Scudino, B. Jerliu, S. Pauly, K.B. Surreddi, U. Kühn, J. Eckert, Ductile bulk metallic glasses produced through designed heterogeneities. Scr. Mater. 65, 815–818 (2011)

    Article  Google Scholar 

  53. Y.S. Oh, C.P. Kim, S. Lee, N.J. Kim, Microstructure and tensile properties of high-strength high-ductility Ti-based amorphous matrix composites containing ductile dendrites. Acta Mater. 59, 7277–7286 (2011)

    Article  Google Scholar 

  54. R.T. Qu, J.X. Zhao, M. Stoica, J. Eckert, Z.F. Zhang, Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects. Mater. Sci. Eng. A 534, 365–373 (2012)

    Article  Google Scholar 

  55. L. Li, E.R. Homer, C.A. Schuh, Shear transformation zone dynamics model for metallic glasses incorporating free volume as a state variable. Acta Mater. 61, 3347–3359 (2013)

    Article  Google Scholar 

  56. E.R. Homer, Examining the initial stages of shear localization in amorphous metals. Acta Mater. 63, 44–53 (2014)

    Article  Google Scholar 

  57. C.E. Packard, O. Franke, E.R. Homer, C.A. Schuh, Nanoscale strength distribution in amorphous versus crystalline metals. J. Mater. Res. 25, 2251–2263 (2010)

    Article  Google Scholar 

  58. T.J. Hardin, E.R. Homer, Microstructural factors of strain delocalization in model metallic glass matrix composites. Acta Mater. 83, 203–215 (2015)

    Article  Google Scholar 

  59. C.E. Packard, L.M. Witmer, C.A. Schuh, Hardening of a metallic glass during cyclic loading in the elastic range, Appl Phys Letters. 92, (2008) 171911. doi:10.1063/1.2919722.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Homer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Homer, E.R., Li, L., Schuh, C.A. (2016). Kinetic Monte Carlo Modeling of Nanomechanics in Amorphous Systems. In: Weinberger, C., Tucker, G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-33480-6_14

Download citation

Publish with us

Policies and ethics