Skip to main content

Mechanism of Formation of an SSVD Initiated by a Barrier Discharge Distributed on the Surface of a Cathode

  • Chapter
  • First Online:
High-Energy Molecular Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 201))

  • 614 Accesses

Abstract

A study was carried out into the mechanisms of formation of an SSVD in CO2–N2–He gas mixtures initiated by an auxiliary barrier discharge distributed on the surface of a cathode. The volume discharge was initiated when the discharge gap was filled by an electron flux formed from the barrier discharge plasma in the course of a smooth rise of the voltage across the electrodes. Measurements were made of the small-signal gain, confirming the model of formation of an SSVD and demonstrating that a discharge of this kind could be used to amplify nanosecond light pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.N. Karnyushin, R.I. Soloukhin, Macroscopic and Molecular Processes in Gas Lasers [in Russian] (Atomizdat, Moscow, 1981)

    Google Scholar 

  2. J.I. Levatter, Shao-Chi Lin, J. Appl. Phys. 51, 210 (1980)

    Article  ADS  Google Scholar 

  3. M.A. Kanatenko, Pis’ma Zh. Tekh. Fiz. 9, 214 (1983) [Sov. Tech. Phys. Lett. 9, 94 (1983)]

    Google Scholar 

  4. R. Dumanchin, J.C. Farcy, M. Michon, J. Rocca-Serra, Paper Presented at Sixth Intern (Quantum Electronics Conf, Kyoto, Japan, 1970)

    Google Scholar 

  5. Y.L. Pan, A.F. Bernhardt, J.R. Simpson, Rev. Sci. Instrum. 43, 662 (1972)

    Article  ADS  Google Scholar 

  6. Y.T. Mazurenko,Y.A. Rubinov, Kvantovaya Elektron. (Moscow) 3, 610 (1976) [Sov. J. Quantum Electron. 6, 328 (1976)]

    Google Scholar 

  7. E.P. Velikhov, VYu. Baranov, V.S. Letokhov, E.A. Ryabov, A.N. Starostin, Pulsed CO 2 Lasers and Their Applications in Isotope Separation [in Russian] (Nauka, Moscow, 1983)

    Google Scholar 

  8. V.V. Apollonov et al., Kvantovaya Elektron. (Moscow) 12, 5 (1985) [Sov. J. Quantum Electron. 15, 1 (1985)]

    Google Scholar 

  9. V.V. Apollonov, G.V. Bush et al., Kvantovaya Elektron. (Moscow) 11, 2149 (1984) [Sov. J. Quantum Electron. 14, 1435 (1984)]

    Google Scholar 

  10. V.V. Apollonov et al., Pis’ma Zh. Tekh. Fiz. 11, 1262 (1985) [Sov. Tech. Phys. Lett. 11, 521 (1985)]

    Google Scholar 

  11. Z.I. Ashurly, Y.M. Vas’kovskiY, I.A. Gordeeva, L.V. Malyshev, R.E. Rovinskii, A.A. Kholodilov, Kvantovaya Elektron. (Moscow) 7, 1456 (1980) [Sov. J. Quantum Electron. 10, 838 (1980)]

    Google Scholar 

  12. H. Raether, Electron Avalanches and Breakdown in Gases (Butter-worths, London, 1964)

    Google Scholar 

  13. E.A. Ballik, В.K. Garside, J. Reid, T. Tricker, J. Appl. Phys. 46, 1322 (1975)

    Article  ADS  Google Scholar 

  14. J.J. Lowke, A.V. Phelps, B.W. Irwin, J. Appl. Phys. 44, 4664 (1973)

    Article  ADS  Google Scholar 

  15. V.V. Apollonov, N. Akhunov et al., Preprint No. 212 [in Russian], Institute of General Physics, Academy of Sciences of the USSR, Moscow (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Apollonov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Apollonov, V.V. (2016). Mechanism of Formation of an SSVD Initiated by a Barrier Discharge Distributed on the Surface of a Cathode. In: High-Energy Molecular Lasers. Springer Series in Optical Sciences, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-319-33359-5_11

Download citation

Publish with us

Policies and ethics