Skip to main content

Beyond Inputs and Outputs: Opening the Black-Box of Land-Use Intensity

  • Chapter
  • First Online:
Social Ecology

Abstract

Despite their central role in land-use transitions, changes in land-use intensity are only poorly understood, and databases for systematically analyzing change in land-use intensity are largely missing. This knowledge gap is critical because, due to the anticipated changes in global population numbers and food, fiber and energy demand, the development of strategies that aim to reap the benefits of land-use intensification (e.g., the reduced land demand for a certain level of production) while simultaneously avoiding detrimental social and ecological effects will become decisive in the near future. In this chapter, we first review existing approaches to analyzing land-use intensity and discuss existing barriers to land-use intensity research. We then elaborate on what the socioecological method inventory contributes to land system research. We argue that the concepts of socioeconomic metabolism and the colonization of nature are apt to significantly contribute to improvements in the analytical capabilities related to land-use intensity research. The strengths of the socioecological method inventory are its strict application of first principles, a sound and meaningful system boundary between society and nature and its applicability to Social and Natural Science approaches. These aspects are prerequisites for guiding the type of data collation and organization that allow investigation into the feedback cycles between social and natural systems that constitute the trade-offs and synergies of the land system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes called the ‘four Fs’ of land-based resources.

  2. 2.

    The term ‘disintensification’ was proposed by Brookfield (1972) to avoid the ambiguous intensification-extensification dichotomy. An alternative term for the reduction in land-use intensity is ‘de-intensification’, proposed by Boserup (1981). The meaning of extensification, however, is ambiguous, indicating both a reduction in intensity and the expansion of, e.g., cropland. The origin of this ambiguity may lie in the fact that an increase in agricultural production can be achieved via expansion of cropland, i.e., larger areas with the same or lower levels of yields per unit area, in contrast to intensification.

  3. 3.

    In German, ‘Hoftor Bilanz’.

References

  • Adriaanse, A., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D., & Schütz, H. (1997). Resource flows: The material basis of industrial economies. Washington, D.C.: World Resources Institute.

    Google Scholar 

  • Alessa, L., & Chapin, F. S, I. I. I. (2008). Anthropogenic biomes: A key contribution to earth-system science. Trends in Ecology & Evolution, 23, 529–531. doi:10.1016/j.tree.2008.07.002.

    Article  Google Scholar 

  • Alexandratos, N. (1999). World food and agriculture: Outlook for the medium and longer term. Proceedings of the National Academy of Sciences, 96, 5908–5914.

    Article  CAS  Google Scholar 

  • Alexandratos, N., Bruinsma, J. (2012). World agriculture: Towards 2030/2050. The 2012 revision. ESA Working paper No. 12–03. FAO, Rome.

    Google Scholar 

  • Bailey, A. P., Basford, W. D., Penlington, N., Park, J. R., Keatinge, J. D. H., Rehman, T., et al. (2003). A comparison of energy use in conventional and integrated arable farming systems in the UK. Agriculture, Ecosystems & Environment, 97, 241–253.

    Article  Google Scholar 

  • Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2005). Sparing land for nature: Exploring the potential impact of changes in agricultural yield on the area needed for crop production. Global Change Biology, 11, 1594–1605.

    Article  Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2009). Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Sciences, 28, 139–163.

    Article  CAS  Google Scholar 

  • Blanke, M., & Burdick, B. (2005). Food (miles) for thought—Energy balance for locally-grown versus imported apple fruit. Environmental Science and Pollution Research, 12, 125–127.

    Article  Google Scholar 

  • Boserup, E. (1965). The conditions of agricultural growth: The economics of agrarian change under population pressure. London: Earthscan.

    Google Scholar 

  • Boserup, E. (1981). Population and technological change: A study of long-term trends. Chicago: University of Chicago Press.

    Google Scholar 

  • Brookfield, H. C. (1972). Intensification and disintensification in Pacific agriculture: A theoretical approach. Pacific Viewpoint, 13, 30–48.

    Google Scholar 

  • Brookfield, H. C. (2001). Intensification, and alternative approaches to agricultural change. Asia Pacific Viewpoint, 42, 181–192.

    Article  Google Scholar 

  • Brookfield, H. C., & Hart, D. (1971). Melanesia: A geographical interpretation of an island world. London: Methuen.

    Google Scholar 

  • Burney, J. A., Davis, S. J., & Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences, 107, 12052–12057.

    Article  CAS  Google Scholar 

  • Cannell, M. G. R. (1982). World forest biomass and primary production data. New York: Academic Press.

    Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, 96, 5952–5959.

    Article  CAS  Google Scholar 

  • Ceddia, M. G., Sedlacek, S., Bardsley, N. O., & Gomez-y-Paloma, S. (2013). Sustainable agricultural intensification or Jevons paradox? The role of public governance in tropical South America. Global Environmental Change, 23, 1052–1063.

    Article  Google Scholar 

  • Chayanov, A.V. (1986). The theory of peasant economy (1st edn). University of Wisconsin Press.

    Google Scholar 

  • Clark, W. C., & Dickson, N. M. (2003). Sustainability science: The emerging research program. Proceedings of the National Academy of Sciences, 100, 8059–8061.

    Article  CAS  Google Scholar 

  • Cleveland, C. J. (1995). The direct and indirect use of fossil fuels and electricity in USA agriculture, 1910–1990. Agriculture, Ecosystems & Environment, 55, 111–121.

    Article  Google Scholar 

  • Coelho, S., Agbenyega, O., Agostini, A., Erb, K.-H., Haberl, H., Hoogwijk, M., et al. (2012). Land and water: Linkages to bioenergy. In T. Johannson, A. Patwardhan, N. Nakicenovic, & L. Gomez-Echeverri (Eds.), Global energy assessment (pp. 1459–1525). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Costanza, R., d’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’neill, R.V., Paruelo, J. (1997). The value of the world’s ecosystem services and natural capital. Nature 387, 253–260.

    Google Scholar 

  • Costanza, R., Graumlich, L., Steffen, W.W.L. (2007). Sustainability or collapse?: An integrated history and future of people on earth. Cambridge: The MIT Press.

    Google Scholar 

  • Daily, G. C., Polasky, S., Goldstein, J., Kareiva, P. M., Mooney, H. A., Pejchar, L., et al. (2009). Ecosystem services in decision making: Time to deliver. Frontiers in Ecology and the Environment, 7, 21–28.

    Article  Google Scholar 

  • DeFries, R. S., Field, C. B., Fung, I., Justice, C. O., Los, S., Matson, P. A., et al. (1995). Mapping the land surface for global atmosphere-biosphere models: Toward continuous distributions of vegetation’s functional properties. Journal of Geophysical Research: Atmospheres, 100, 20867–20882.

    Article  Google Scholar 

  • Diamond, J. (2005). Collapse: How societies choose to fail or succeed (revised edition). Harmondsworth: Penguin.

    Google Scholar 

  • Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.). (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Volume 5: Waste. Hayama, Japan: Institute for Global Environmental Strategies (IGES).

    Google Scholar 

  • Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6, 439–447. doi:10.1890/070062.

    Article  Google Scholar 

  • Erb, K.-H. (2004). Land use–related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems, 7, 563–572.

    Article  Google Scholar 

  • Erb, K.-H. (2012). How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecological Economics, 76, 8–14.

    Article  Google Scholar 

  • Erb, K.-H., Gaube, V., Krausmann, F., Plutzar, C., Bondeau, A., & Haberl, H. (2007). A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. Journal of Land Use Science, 2, 191–224.

    Article  Google Scholar 

  • Erb, K.-H., Gingrich, S., Krausmann, F., & Haberl, H. (2008). Industrialization, fossil fuels, and the transformation of land use. Journal of Industrial Ecology, 12, 686–703.

    Article  CAS  Google Scholar 

  • Erb, K.-H., Haberl, H., Jepsen, M. R., Kuemmerle, T., Lindner, M., Müller, D., et al. (2013a). A conceptual framework for analysing and measuring land-use intensity. Current Opinion in Environmental Sustainability, 5, 464–470.

    Article  Google Scholar 

  • Erb, K.-H., Kastner, T., Luyssaert, S., Houghton, R. A., Kuemmerle, T., Olofsson, P., & Haberl, H. (2013b). Bias in the attribution of forest carbon sinks. Nature Climate Change, 3, 854–856.

    Article  CAS  Google Scholar 

  • Erb, K.-H., Krausmann, F., Gaube, V., Gingrich, S., Bondeau, A., Fischer-Kowalski, M., & Haberl, H. (2009a). Analyzing the global human appropriation of net primary production—Processes, trajectories, implications. An introduction. Ecological Economics, 69, 250–259.

    Article  Google Scholar 

  • Erb, K.-H., Krausmann, F., Lucht, W., & Haberl, H. (2009b). Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption. Ecological Economics, 69, 328–334.

    Article  Google Scholar 

  • Erb, K.-H., Niedertscheider, M., Dietrich, J. P., Schmitz, C., Verburg, P. H., Rudbeck Jepsen, M., & Haberl, H. (2014). Conceptual and empirical approaches to mapping and quantifying land-use intensity. In M. Fischer-Kowalski, A. Reenberg, A. Mayer, & A. Schaffartzik (Eds.), Ester Boserup’s legacy on sustainability: Orientations for contemporary research (pp. 61–86). Dordrecht: Springer.

    Chapter  Google Scholar 

  • FAO. (2010). Forest resources assessment 2010. Main report. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • FAOSTAT. (2014). Statistical Databases. http://faostat.fao.org [WWW Document]. URL http://faostat.fao.org.

  • Fischer-Kowalski, M., Haberl, H. (2007). Socioecological transitions and global change: Trajectories of social metabolism and land use. Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  • Fischer-Kowalski, M., Haberl, H., Hüttler, W., Payer, H., Schandl, H., Winiwarter, V., Zangerl-Weisz, H. (1997). Gesellschaftlicher Stoffwechsel und Kolonisierung von Natur: ein Versuch in Sozialer Ökologie. Fakultas.

    Google Scholar 

  • Fischer-Kowalski, M., & Hüttler, W. (1998). Society’s metabolism. Journal of Industrial Ecology, 2, 107–136.

    Article  Google Scholar 

  • Fischer-Kowalski, M., Krausmann, F., Giljum, S., Lutter, S., Mayer, A., Bringezu, S., et al. (2011). Methodology and indicators of economy-wide material flow accounting state of the art and reliability across sources. Journal of Industrial Ecology, 15, 855–876.

    Article  Google Scholar 

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309, 570.

    Article  CAS  Google Scholar 

  • Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P.M. (2011). Solutions for a cultivated planet. Nature 478, 337–342.

    Google Scholar 

  • Geertz, C. (1963). Agricultural involution: The process of ecological change in Indonesia. University of California Press.

    Google Scholar 

  • Geoghegan, J., Pritchard, L. J., Ogneva-Himmelberger, Y., Chowdhury, R. R., Sanderson, S., & Turner, B. L. (1998). “Socializing the pixel” and “pixelizing the social” in land-use and land-cover change. In D. M. Liverman, E. Moran, R. R. Rindfuss, & P. Stern (Eds.), People and pixels. Linking remote sensing and social science (pp. 51–69). Washington, D.C: National Academy Press.

    Google Scholar 

  • Gerbens-Leenes, W., Hoekstra, A. Y., & van der Meer, T. H. (2009). The water footprint of bioenergy. Proceedings of the National Academy of Sciences, 106, 10219–10223.

    Article  CAS  Google Scholar 

  • Gingrich, S., Erb, K.-H., Krausmann, F., Gaube, V., & Haberl, H. (2007). Long-term dynamics of terrestrial carbon stocks in Austria: A comprehensive assessment of the time period from 1830 to 2000. Regional Environmental Change, 7, 37–47.

    Article  Google Scholar 

  • Goudie, A. (2006). The human impact on the natural environment (6th ed.). Oxford, Cambridge: Blackwell.

    Google Scholar 

  • Grau, R., Kuemmerle, T., & Macchi, L. (2013). Beyond “land sparing versus land sharing”: Environmental heterogeneity, globalization and the balance between agricultural production and nature conservation. Current Opinion in Environmental Sustainability, 5, 477–483.

    Article  Google Scholar 

  • Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1194. doi:10.1086/283244.

    Article  Google Scholar 

  • Gruber, N., & Galloway, J. N. (2008). An earth-system perspective of the global nitrogen cycle. Nature, 451, 293–296.

    Article  CAS  Google Scholar 

  • Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K.-H., & Hoogwijk, M. (2010). The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opinion in Environmental Sustainability, 2, 394–403.

    Article  Google Scholar 

  • Haberl, H., Erb, K.-H., & Krausmann, F. (2014). Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annual Review of Environment and Resources, 39, 363–391. doi:10.1146/annurev-environ-121912-094620.

    Article  Google Scholar 

  • Haberl, H., Erb, K.-H., Krausmann, F., Berecz, S., Ludwiczek, N., Martínez-Alier, J., et al. (2009). Using embodied HANPP to analyze teleconnections in the global land system: Conceptual considerations. Geografisk Tidsskrift-Danish Journal of Geography, 109, 119–130.

    Article  Google Scholar 

  • Haberl, H., Erb, K.-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., et al. (2007). Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 104, 12942–12947.

    Article  CAS  Google Scholar 

  • Haberl, H., Erb, K.-H., Krausmann, F., Loibl, W., Schulz, N., & Weisz, H. (2001). Changes in ecosystem processes induced by land use: Human appropriation of aboveground NPP and its influence on standing crop in Austria. Global Biogeochemical Cycles, 15, 929–942.

    Article  CAS  Google Scholar 

  • Haberl, H., Fischer-Kowalski, M., Krausmann, F., Weisz, H., & Winiwarter, V. (2004). Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy, 21, 199–213.

    Article  Google Scholar 

  • Hannah, L., Lohse, D., Hutchinson, C., Carr, J. L., & Lankerani, A. (1994). A preliminary inventory of human disturbance of world ecosystems. Ambio, 23, 246–250.

    Google Scholar 

  • Hansen, M., DeFries, R., Townshend, J., Carroll, M., Dimiceli, C., & Sohlberg, R. (2003). Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS vegetation continuous fields algorithm. Earth Interactions, 7, 1–15.

    Article  Google Scholar 

  • Hertwich, E. G., & Peters, G. P. (2009). Carbon footprint of nations: A global, trade-linked analysis. Environmental Science and Technology, 43, 6414–6420.

    Article  CAS  Google Scholar 

  • Herzog, F., Steiner, B., Bailey, D., Baudry, J., Billeter, R., Bukácek, R., et al. (2006). Assessing the intensity of temperate European agriculture at the landscape scale. European Journal of Agronomy, 24, 165–181.

    Article  Google Scholar 

  • Hoekstra, A. Y., & Hung, P. Q. (2005). Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Change, 15, 45–56.

    Article  Google Scholar 

  • Hospido, A., Milà i Canals, L., McLaren, S., Truninger, M., Edwards-Jones, G., Clift, R. (2009). The role of seasonality in lettuce consumption: A case study of environmental and social aspects. The International Journal of Life Cycle Assessment 14, 381–391.

    Google Scholar 

  • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R., & Woodwell, G. M. (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecological Monographs, 53, 235.

    Article  CAS  Google Scholar 

  • Hunt, R. C. (2000). Labor productivity and agricultural development: Boserup revisited. Human Ecology, 28, 251–277.

    Article  Google Scholar 

  • Hurtt, G., Chini, L., Frolking, S., Betts, R., Feddema, J., Fischer, G., et al. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117–161.

    Article  Google Scholar 

  • IAASTD. (2009). Agriculture at a crossroad. International assessment of agricultural knowledge, science and technology for development. Global report. Washington, D.C.: Island Press.

    Google Scholar 

  • Kastner, T., Erb, K.-H., & Nonhebel, S. (2011). International wood trade and forest change: A global analysis. Global Environmental Change, 21, 947–956.

    Article  Google Scholar 

  • Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I., et al. (2001). Sustainability science. Science, 292, 641–642.

    Article  CAS  Google Scholar 

  • Kauppi, P. E., Ausubel, J. H., Fang, J., Mather, A. S., Sedjo, R. A., & Waggoner, P. E. (2006). Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences, 103, 17574–17579.

    Article  CAS  Google Scholar 

  • Klein Goldewijk, K., Van Drecht, G., & Bouwman, A. F. (2007). Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. Journal of Land Use Science, 2, 167–190.

    Article  Google Scholar 

  • Krausmann, F., Erb, K.-H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., et al. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 110, 10324–10329.

    Article  CAS  Google Scholar 

  • Krausmann, F., Erb, K.-H., Gingrich, S., Lauk, C., & Haberl, H. (2008). Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecological Economics, 65, 471–487.

    Article  Google Scholar 

  • Krausmann, F., Haberl, H., Erb, K.-H., & Wackernagel, M. (2004). Resource flows and land use in Austria 1950–2000: Using the MEFA framework to monitor society-nature interaction for sustainability. Land Use Policy, 21, 215–230.

    Article  Google Scholar 

  • Krausmann, F., Haberl, H., Erb, K.-H., Wiesinger, M., Gaube, V., & Gingrich, S. (2009). What determines geographical patterns of the global human appropriation of net primary production? Journal of Land Use Science, 4, 15–33.

    Article  Google Scholar 

  • Krausmann, F., Haberl, H., Schulz, N. B., Erb, K.-H., Darge, E., & Gaube, V. (2003). Land-use change and socio-economic metabolism in Austria-Part I: Driving forces of land-use change: 1950–1995. Land Use Policy, 20, 1–20.

    Article  Google Scholar 

  • Kruska, R. L., Reid, R. S., Thornton, P. K., Henninger, N., & Kristjanson, P. M. (2003). Mapping livestock-oriented agricultural production systems for the developing world. Agricultural Systems, 77, 39–63. doi:10.1016/S0308-521X(02)00085-9.

    Article  Google Scholar 

  • Kuemmerle, T., Erb, K.-H., Meyfroidt, P., Müller, D., Verburg, P. H., Estel, S., et al. (2013). Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 5, 484–493.

    Article  Google Scholar 

  • Lal, R. (2012). Land degradation and pedological processes in a changing climate. Pedologist 315–325.

    Google Scholar 

  • Lambin, E. F., Geist, H., & Rindfuss, R. R. (2006). Introduction: Local processes with global impacts. Land-use and land-cover change (pp. 1–8). Berlin: Springer.

    Chapter  Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108, 3465–3472.

    Article  CAS  Google Scholar 

  • Lambin, E. F., Rounsevell, M. D. A., & Geist, H. J. (2000). Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems & Environment, 82, 321–331.

    Article  Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. (2001). The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change, 11, 261–269.

    Article  Google Scholar 

  • Lauk, C., & Erb, K.-H. (2009). Biomass consumed in anthropogenic vegetation fires: Global patterns and processes. Ecological Economics, 69, 301–309.

    Article  Google Scholar 

  • Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: how do climate and agricultural management explain the “yield gap” of croplands around the world? Global Ecology and Biogeography, 19, 769–782.

    Article  Google Scholar 

  • Lieth, H. (1973). Primary produciton: Terrestrial ecosystems. Human Ecology, 1, 303–332.

    Article  Google Scholar 

  • Lieth, H., Whittaker, R.H. (1975). Primary productivity of the biosphere. Berlin: Springer VI.

    Google Scholar 

  • Lindenmayer, D., Cunningham, S., & Young, A. (2012). Land use intensification: Effects on agriculture, biodiversity and ecological processes. Melbourne: CSIRO Publishing.

    Google Scholar 

  • Liverman, D. M., & Cuesta, R. M. R. (2008). Human interactions with the earth system: People and pixels revisited. Earth Surface Processes and Landforms, 33, 1458–1471. doi:10.1002/esp.1715.

    Article  Google Scholar 

  • Liverman, D., Moran, E.F., Rindfuss, R.R., Stern, P. (1998). People and pixels: Linking remote sensing and social science. Washington D.C.: National Academy Press.

    Google Scholar 

  • Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179.

    Article  Google Scholar 

  • Luyssaert, S., Hessenmöller, D., von Lüpke, N., Kaiser, S., & Schulze, E. D. (2011). Quantifying land-use and disturbance intensity in forestry, based on the self-thinning relationship. Ecological Applications, 8, 3272–3284.

    Article  Google Scholar 

  • Luyssaert, S., Jammet, M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., et al. (2014). Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4, 389–393.

    Article  Google Scholar 

  • Malthus, T.R. (1798). An essay on the prinicple of population. Printed for J. Johnson, in St. Paul’s Church-Yard, London. Retrieved from http://www.esp.org.

  • Markussen, M., & Østergård, H. (2013). Energy analysis of the Danish food production system: Food-EROI and fossil fuel dependency. Energies, 6, 4170–4186.

    Article  CAS  Google Scholar 

  • Mather, A. S. (1992). The forest transition. Area, 24, 367–379.

    Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    Article  CAS  Google Scholar 

  • McCloskey, J. M., & Spalding, H. (1989). A reconnaissance-level inventory of the amount of wilderness remaining in the world. Ambio, 18, 221–227.

    Google Scholar 

  • McNeill, J.R. (2001). Something new under the sun: An environmental history of the twentieth-century world. WW Norton & Company.

    Google Scholar 

  • Meisterling, K., Samaras, C., & Schweizer, V. (2009). Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. Journal of Cleaner Production, 17, 222–230.

    Article  CAS  Google Scholar 

  • Meyfroidt, P., & Lambin, E. F. (2011). Global forest transition: Prospects for an end to deforestation. Annual Review of Environment and Resources, 36, 343–371.

    Article  Google Scholar 

  • Meyfroidt, P., Rudel, T. K., & Lambin, E. F. (2010). Forest transitions, trade, and the global displacement of land use. Proceedings of the National Academy of Sciences, 107, 20917–20922.

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Current state and trends (Vol. 1). Washington, D.C.: Island Press.

    Google Scholar 

  • Monfreda, C., Ramankutty, N., & Foley, J. A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 22, 1–19.

    Article  CAS  Google Scholar 

  • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257.

    Article  CAS  Google Scholar 

  • Nelson, G. C. (2002). Introduction to the special issue on spatial analysis for agricultural economists. Agricultural Economics, 27, 197–200.

    Article  Google Scholar 

  • Netting, R.M.C. (1993). Smallholders, householders: Farm families and the ecology of intensive, sustainable agriculture. Stanford: Stanford Univ. Press.

    Google Scholar 

  • Neumann, K., Verburg, P. H., Stehfest, E., & Müller, C. (2010). The yield gap of global grain production: A spatial analysis. Agricultural Systems, 103, 316–326.

    Article  Google Scholar 

  • Niedertscheider, M., Gingrich, S., & Erb, K.-H. (2012). Changes in land use in South Africa between 1961 and 2006: An integrated socio-ecological analysis based on the human appropriation of net primary production framework. Regional Environmental Change, 12, 715–727.

    Article  Google Scholar 

  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    Article  CAS  Google Scholar 

  • Pelletier, N., Audsley, E., Brodt, S., Garnett, T., Henriksson, P., Kendall, A., et al. (2011). Energy intensity of agriculture and food systems. Annual Review of Environment and Resources, 36, 223–246.

    Article  Google Scholar 

  • Pereira, H. M., Navarro, L. M., & Martins, I. S. (2012). Global biodiversity change: The bad, the good, and the unknown. Annual Review of Environment and Resources, 37, 25–50.

    Article  Google Scholar 

  • Pickett, S.T.A., White, T.A. (1986). The ecology of natural disturbance and patch dynamics. New York: Academic Press.

    Google Scholar 

  • Pimentel, D. (2009). Energy inputs in food crop production in developing and developed nations. Energies, 2, 1–24.

    Article  Google Scholar 

  • Pimentel, D., Hurd, L. E., Bellotti, A. C., Forster, M. J., Oka, I. N., Sholes, O. D., & Whitman, R. J. (1973). Food production and the energy crisis. Science, 182, 443–449.

    Article  CAS  Google Scholar 

  • Portmann, F.T., Siebert, S., Döll, P. (2010). MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles 24, GB1011.

    Google Scholar 

  • Ramankutty, N., Evan, A.T., Monfreda, C., Foley, J.A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles 22, GB1003.

    Google Scholar 

  • Ramankutty, N., & Foley, J. A. (1999). Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997–1027.

    Article  CAS  Google Scholar 

  • Ricardo, D. (1815). An essay on the influence of a low price of corn on the profits of stock. London: John Murray.

    Google Scholar 

  • Rindfuss, R. R., Walsh, S. J., Turner, B. L., Fox, J., & Mishra, V. (2004). Developing a science of land change: Challenges and methodological issues. Proceedings of the National Academy of Sciences of the United States of America, 101, 13976–13981.

    Article  CAS  Google Scholar 

  • Rounsevell, M. D. A., Pedroli, B., Erb, K.-H., Gramberger, M., Busck, A. G., Haberl, H., et al. (2012). Challenges for land system science. Land Use Policy, 29, 899–910.

    Article  Google Scholar 

  • Rudel, T. K., Coomes, O. T., Moran, E., Achard, F., Angelsen, A., Xu, J., & Lambin, E. (2005). Forest transitions: towards a global understanding of land use change. Global Environmental Change Part A, 15, 23–31.

    Article  Google Scholar 

  • Rudel, T. K., Schneider, L., Uriarte, M., Turner, B. L., DeFries, R., Lawrence, D., et al. (2009). Agricultural intensification and changes in cultivated areas, 1970–2005. Proceedings of the National Academy of Sciences, 106, 20675–20680.

    Article  CAS  Google Scholar 

  • Sala, O.E., Stuart Chapin, F., III, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H. (2000). Global Biodiversity Scenarios for the Year 2100. Science 287, 1770–1774.

    Google Scholar 

  • Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild. BioScience, 52, 891–904.

    Article  Google Scholar 

  • Seto, K., Bringezu, S., de Groot, D., Erb, K.-H., Graedel, T., Ramankutty, N., et al. (2012). Stocks, flows, and prospects of land. In T. Graedel & E. van der Voet (Eds.), Linkages of sustainability (pp. 71–96). Cambridge, MA: MIT Press.

    Google Scholar 

  • Shriar, A. (2000). Agricultural intensity and its measurement in frontier regions. Agroforestry Systems, 49, 301–318.

    Article  Google Scholar 

  • Siebert, S., Portmann, F. T., & Döll, P. (2010). Global patterns of cropland use intensity. Remote Sensing, 2, 1625–1643.

    Article  Google Scholar 

  • Sieferle, R. P., Krausmann, F., Schandl, H., & Winiwarter, V. (2006). Das Ende der Fläche. Zum Sozialen Metabolismus der Industrialisierung. Köln: Böhlau.

    Google Scholar 

  • Simmons, I. G. (1989). Changing the face of the earth: Culture, environment, history. Oxford: Blackwell.

    Google Scholar 

  • Smith, P., Haberl, H., Popp, A., Erb, K.-H., Lauk, C., Harper, R., et al. (2013). How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biology, 19, 2285–2302.

    Article  Google Scholar 

  • Spangenberg, J. H., Görg, C., Truong, D. T., Tekken, V., Bustamante, J. V., & Settele, J. (2014). Provision of ecosystem services is determined by human agency, not ecosystem functions. Four case studies. International Journal of Biodiversity Science, Ecosystem Services & Management, 10, 40–53.

    Article  Google Scholar 

  • Stanners, D., Bosch, P., Dom, A., Gabrielsen, P., Gee, D., Martin, J., Rickard, L., Weber, J.-L. (2007). Frameworks for environmental assessment and indicators at the EEA. In: Hak, T., Moldan, B., Dahl, A.L. (Eds.) Sustainability indicators. A scientific assessment. Scope 67 (pp. 127–144). Washington D.C.: Island Press.

    Google Scholar 

  • Steffen, W. L., Sanderson, A., Tyson, P., Jäger, J., Matson, P. A., Moore, B, I. I. I., et al. (2005). Global change and the earth system: A planet under pressure. Berlin: Springer.

    Google Scholar 

  • Steinhart, S. S., & Steinhart, C. E. (1974). Energy use in the US food system. Science, 184, 307–316.

    Article  CAS  Google Scholar 

  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.

    Article  Google Scholar 

  • Tainter, J. (1990). The collapse of complex societies. Cambridge: Cambridge University Press.

    Google Scholar 

  • Temme, A., & Verburg, P. (2010). Mapping and modelling of changes in agricultural intensity in Europe. Agriculture, Ecosystems & Environment, 140, 46–56.

    Article  Google Scholar 

  • Thomas, W. L. (1956). Man’s role in changing the face of the earth. Chicago, Illinois: University of Chicago Press.

    Google Scholar 

  • Tilman, D. (1999). Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proceedings of the National Academy of Sciences, 96, 5995.

    Article  CAS  Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108, 20260–20264.

    Article  CAS  Google Scholar 

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecology Letters, 8, 857–874.

    Article  Google Scholar 

  • Turner, B. L., & Ali, A. M. S. (1996). Induced intensification: Agricultural change in Bangladesh with implications for Malthus and Boserup. Proceedings of the National Academy of Sciences, 93, 14984–14991.

    Article  CAS  Google Scholar 

  • Turner, B. L., & Doolittle, W. (1978). The concept and measure of agricultural intensity. The Professional Geographer, 30, 297–301.

    Article  Google Scholar 

  • Turner, B. L., & Fischer-Kowalski, M. (2010). Ester Boserup: An interdisciplinary visionary relevant for sustainability. Proceedings of the National Academy of Sciences, 107, 21963–21965.

    Article  CAS  Google Scholar 

  • Turner, B. L., Hanham, R. Q., & Portararo, A. V. (1977). Population pressure and agricultural intensity. Annals of the Association of American Geographers, 67, 384–396.

    Article  Google Scholar 

  • Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences, 104, 20666–20671.

    Article  CAS  Google Scholar 

  • Tüxen, R. (1956). Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angewandte Pflanzensoziologie, 13, 5–42.

    Google Scholar 

  • Van Beek, C. L., Brouwer, L., & Oenema, O. (2003). The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutrient Cycling in Agroecosystems, 67, 233–244.

    Article  Google Scholar 

  • Verburg, P. H., Neumann, K., & Nol, L. (2011). Challenges in using land use and land cover data for global change studies. Global Change Biology, 17, 974–989.

    Article  Google Scholar 

  • Verburg, P. H., van de Steeg, J., Veldkamp, A., & Willemen, L. (2009). From land cover change to land function dynamics: A major challenge to improve land characterization. Journal of Environmental Management, 90, 1327–1335.

    Article  Google Scholar 

  • Verstraete, M. M., Scholes, R. J., & Smith, M. S. (2009). Climate and desertification: Looking at an old problem through new lenses. Frontiers in Ecology and the Environment, 7, 421–428.

    Article  Google Scholar 

  • Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., & Matson, P. A. (1986). Human appropriation of the products of photosynthesis. BioScience, 36, 368–373.

    Article  Google Scholar 

  • Von Thünen, J. H. (1826). Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalokonomie oder Untersuchungen über den Einfluss, den die Getreidepreise, der Reichthum des Bodens und die Abgaben auf den Ackerbau ausüben. Friedrich Berthes, Hamburg. Retrieved from http://www.deutschestextarchiv.de/book/show/thuenen_staat_1826.

  • West, P. C., Gibbs, H. K., Monfreda, C., Wagner, J., Barford, C. C., Carpenter, S. R., & Foley, J. A. (2010). Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proceedings of the National Academy of Sciences, 107, 19645–19648.

    Article  CAS  Google Scholar 

  • White, P. S. (1979). Pattern, process, and natural disturbance in vegetation. The Botanical Review, 45, 229–299.

    Article  Google Scholar 

  • Whittaker, R. H., & Likens, G. E. (1973). Primary production: The biosphere and man. Human Ecology, 1, 357–369.

    Article  Google Scholar 

  • Winiwarter, V., Gerzabek, H. (Eds.). (2012). The challenge of sustaining soils: Natural and social ramifications of biomass production in a changing world, Interdisciplinary Perspectives. Verlag der Österreichischen Akademie der Wissenschaften.

    Google Scholar 

  • Wright, D. H. (1990). Human impacts on energy flow through natural ecosystems, and implications for species endangerment. Ambio, 19, 189–194.

    Google Scholar 

  • Zika, M., & Erb, K.-H. (2009). The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecological Economics, 69, 310–318.

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the European Research Council for the Starting Independent Researcher Grant ERC-263522 ‘LUISE’, from EU-FP7 265104 ‘VOLANTE’ and from the Austrian Science Fund (FWF) project P20812-G11 is gratefully acknowledged. This book chapter contributes to the Global Land Project (http://www.globallandproject.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Erb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erb, KH. et al. (2016). Beyond Inputs and Outputs: Opening the Black-Box of Land-Use Intensity. In: Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V. (eds) Social Ecology. Human-Environment Interactions, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-33326-7_4

Download citation

Publish with us

Policies and ethics