Skip to main content

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

Neutron imaging is a non-destructive experimental method, which allows for revealing of the inner structure of the investigated objects. The high-penetration depth of the neutron beam in metal and rock materials in combination with the high-sensitivity to light-elements like hydrogen, lithium and boron determines the complimentary of the method to the wide spread X-ray and synchrotron imaging. In modern archaeology and paleontology neutron radiography and tomography are mainly applied for investigations of large scale samples, detection of organic materials and inspection of the level of degradation. Beside absorption contrast, other contrast mechanisms can be utilized in neutron imaging. Within the last decade, major technique developments included energy selective (monochromatic) imaging, phase-contrast imaging, dark-field (USANS) imaging, polarized neutron imaging, neutron resonance absorption imaging and diffraction contrast imaging. The latter, often also referred to as Bragg edge imaging, is based on energy selection by a monochromator or by time of flight and can be regarded as a powerful tool for applications in cultural heritage and archaeology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banhart J (2008) Advanced tomographic methods in materials research and engineering. Oxford University Press, New York

    Google Scholar 

  • Barton JP (1965) Radiographic examination using cold neutrons. Br J Appl Phys 16:1051

    Article  Google Scholar 

  • Belgya T, Kis Z (2011) PGAA analysis of isotopically enriched samples. Proceedings of the Final Scientific EFNUDAT Workshop, CERN, Geneva (Switzerland) from 30th August to 2nd of September 2010, https://indico.cern.ch/event/.../Proceedings_EFNUDAT_August2010_REV_FINAL.pdf, pp. 1–7

  • Berger H, Tylka J, Talboy J (1964) Determination of cadmium burnup in reactor control rods by neutron radiography. Nucl Sci Eng 18:236

    Google Scholar 

  • Bowman JD, Szymanski JJ, Yuan VW, Bowman CD, Silverman A, Zhu X (1990) Current-mode detector for neutron time-of-flight studies. Nucl Instrum Methods Phys Res Sect A 297:183–189 (published online Epub11/15/)

    Google Scholar 

  • Carpenter JM (1977) Pulsed spallation neutron sources for slow neutron scattering. Nucl Instrum Methods 145:91–113 (published online Epub8/15/)

    Google Scholar 

  • Cassels J (1950) The scattering of neutrons by crystals. Prog Nucl Phys (editor OR)

    Google Scholar 

  • Fermi E, Sturm WJ, Sachs RG (1947) The transmission of slow neutrons through microcrystalline materials. Phys Rev 71:589–594 (published online Epub05/01/)

    Google Scholar 

  • Johnson R, Bowman C (1982) High resolution powder diffraction by white source transmission measurements. AIP Conf Proc 89:53–56 (published online Epub191)

    Google Scholar 

  • Josic L, Steuwer A, Lehmann E (2010) Energy selective neutron radiography in material research. Appl Phys A 99:515–522 (published online Epub2010/06/01)

    Google Scholar 

  • Josic L, Lehmann E, Kaestner A (2011) Energy selective neutron imaging in solid state materials science. Nucl Instrum Methods Phys Res Sect A 651:166–170 (published online Epub9/21/)

    Google Scholar 

  • Kallmann H, Kuhn E (1940) Vol US Patent No 2186 757

    Google Scholar 

  • Kardjilov N, Hilger A, Manke I, Strobl M, Dawson M, Banhart J (2009) New trends in neutron imaging. Nucl Instrum Methods Phys Res Sect A 605:13–15

    Article  Google Scholar 

  • Kardjilov N, Manke I, Hilger A, Strobl M, Banhart J (2011a) Neutron imaging in materials science. Mater Today 14:248

    Article  Google Scholar 

  • Kardjilov N, Dawson M, Hilger A, Manke I, Strobl M, Penumadu D, Kim FH, Garcia-Moreno F, Banhart J (2011b) A highly adaptive detector system for high resolution neutron imaging. Nucl Instrum Methods Phys Res A 651:95–99

    Article  Google Scholar 

  • Kardjilov N, Manke I, Hilger A, Williams S, Strobl M, Woracek R, Boin M, Lehmann E, Penumadu D, Banhart J (2012) Neutron Bragg-edge mapping of weld seams. Int J Mater Res 151–154

    Google Scholar 

  • Kardjilov N, Hilger A, Manke I, Benfante V, Lo Celso F, Triolo R, Ruffo I, Tusa S (2015) Neutron tomography in archaeology. Mater Prufung 57

    Google Scholar 

  • Kardjilov N, Hilger A, Manke I, Woracek R, Banhart J (2016) CONRAD-2: the new neutron imaging instrument at the Helmholtz-Zentrum Berlin. J Appl Crystalography 49:195–202

    Article  Google Scholar 

  • Kiyanagi Y, Kamiyama T, Kino K, Sato H, Sato S, Uno S (2014) Pulsed neutron imaging using 2-dimensional position sensitive detectors. J Instrum 9:C07012

    Article  Google Scholar 

  • Lehmann EH, Frei G, Vontobel P, Josic L, Kardjilov N, Hilger A, Kockelmann W, Steuwer A (2009) The energy-selective option in neutron imaging. Nucl Instrum Methods Phys Res Sect A 603:429–438

    Article  Google Scholar 

  • Lehmann E, Peetermans S, Josic L, Leber H, van Swygenhoven H (2014) Energy-selective neutron imaging with high spatial resolution and its impact on the study of crystalline-structured materials. Nucl Instrum Methods Phys Res Sect A 735:102–109

    Article  Google Scholar 

  • Meggers K, Priesmeyer HG, Trela WJ, Bowman CD, Dahms M (1994a) Real time neutron transmission investigation of the austenite-bainite transformation in grey iron. Nucl Instrum Methods Phys Res Sect B 88:423–429 (published online Epub6/2/)

    Google Scholar 

  • Meggers K, Priesmeyer HG, Trela WJ, Dahms M (1994b) Investigation of the austenite-bainite transformation in gray iron using real time neutron transmission. Mater Sci Eng A 188:301–304 (published online Epub11/30/)

    Google Scholar 

  • Mikula P, Vrána M, Lukáš P, Å aroun J, Strunz P, Wagner V, Alefeld B (1995) Bragg optics for strain/stress measurement techniques. Physica B Condensed Matter 213–214:845–847 (published online Epub8/1/)

    Google Scholar 

  • Peetermans S, van Langh R, Lehmann E, Pappot A (2012) Quantification of the material composition of historical copper alloys by means of neutron transmission measurements. J Anal At Spectrom 27:1674–1679

    Article  Google Scholar 

  • Peter O (1946) Neutronen-Durchleuchtung. Zeitschrift Naturforschung Teil A 1:557

    Google Scholar 

  • Priesmeyer HG, Stalder M, Vogel S, Meggers K, Bless R, Trela W (1999) Bragg-Edge Transmission as an Additional Tool for Strain Measurements. Textures Microstruct 33:173–185

    Article  Google Scholar 

  • Salvemini F, Grazzi F, Peetermans S, Civita F, Franci R, Hartmann S, Lehmann E, Zoppi M (2012) Quantitative characterization of Japanese ancient swords through energy-resolved neutron imaging. J Anal At Spectrom 27:1494–1501

    Article  Google Scholar 

  • Santisteban JR, Edwards L, Fizpatrick ME, Steuwer A, Withers PJ (2002a) Engineering applications of Bragg-edge neutron transmission. Appl Phys A Mater Sci Process 74:s1433–s1436

    Article  Google Scholar 

  • Santisteban JR, Edwards L, Priesmeyer HG, Vogel S (2002b) Comparison of Bragg-Edge neutron-transmission spectroscopy at ISIS and LANSCE. Appl Phys A Mater Sci Process 74:s1616–s1618

    Article  Google Scholar 

  • Santisteban JR, Vicente-Alvarez MA, Vizcaino P, Banchik AD, Vogel SC, Tremsin AS, Vallerga JV, McPhate JB, Lehmann E, Kockelmann W (2011) Texture imaging of zirconium based components by total neutron cross-section experiments. J Nucl Mater

    Google Scholar 

  • Schillinger B (2001) Improved radiography and 3D tomography due to better beam geometry. Nondestr Test Eval 16:277–285

    Article  Google Scholar 

  • Schillinger B, Gebhard R, Haas B, Ludwig W, Rausch C, Wagner U (1996) 3D computer tomography in material testing and archaeology. In: Presented at the 5th World Conference on Neutron Radiography. Berlin, Germany, June 17–20

    Google Scholar 

  • Schulz M, Böni P, Calzada E, Mühlbauer M, Schillinger B (2009) Energy-dependent neutron imaging with a double crystal monochromator at the ANTARES facility at FRM II. Nucl Instrum Methods Phys Res Sect A 605:33–35 (published online Epub6/21/)

    Google Scholar 

  • Siegmund OH, Vallerga JV, Tremsin AS, McPhate J, Feller B (2007) High spatial resolution neutron sensing microchannel plate detectors. Nucl Instrum Methods Phys Res Sect A 576:178–182

    Article  Google Scholar 

  • Steuwer A, Withers PJ, Santisteban JR, Edwards L, Bruno G, Fitzpatrick ME, Daymond MR, Johnson MW, Wang D (2001) Bragg Edge Determination for Accurate Lattice Parameter and Elastic Strain Measurement. physica status solidi (a) 185:221–230

    Google Scholar 

  • Steuwer A, Santisteban JR, Withers PJ, Edwards L, Fitzpatrick ME (2003) In situ determination of stresses from time-of-flight neutron transmission spectra. J Appl Crystallogr 36:1159–1168

    Article  Google Scholar 

  • Strobl M, Manke I, Kardjilov N, Hilger A, Dawson M, Banhart J (2009) Advances in neutron radiography and tomography. J Phys D Appl Phys 42:243001

    Article  Google Scholar 

  • Strobl M, Steitz R, Kreuzer M, Nawara A, Mezei F, Rose M, Amitesh P, Grunze M, Dahint R (2010) BioRef—a time-of-flight neutron reflectometer combined with in-situ infrared spectroscopy at the Helmholtz Centre Berlin. J Phys Conf Ser 251:012059

    Article  Google Scholar 

  • Thewlis J (1956) Neutron radiography. Br J Appl Phys 7:345

    Article  Google Scholar 

  • Treimer W, Strobl M, Kardjilov N, Hilger A, Manke I (2006) Wavelength tunable device for neutron radiography and tomography. Appl Phys Lett 89:203504

    Article  Google Scholar 

  • Tremsin AS, Bruce Feller W, Gregory Downing R (2005) Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10B doping. Nucl Instrum Methods Phys Res Sect A 539:278–311

    Google Scholar 

  • Tremsin AS, Vallerga JV, McPhate JB, Siegmund OHW, Feller WB, Crow L, Cooper RG (2008) On the possibility to image thermal and cold neutron with sub-15 μm spatial resolution. Nucl Instrum Methods Phys Res Sect A 592:374–384

    Article  Google Scholar 

  • Tremsin AS, McPhate JB, Kockelmann WA, Vallerga JV, Siegmund OHW, Feller WB (2009) Energy-Resolving Neutron Transmission Radiography at the ISIS Pulsed Spallation Source With a High-Resolution Neutron Counting Detector. Nucl Sci IEEE Trans 56:2931–2937

    Article  Google Scholar 

  • Tremsin AS, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB, Bilheux HZ, Molaison JJ, Tulk CA, Crow L, Cooper RG, Penumadu D (2010a) Transmission Bragg edge spectroscopy measurements at ORNL Spallation Neutron Source. J Phys Conf Ser 251:012069

    Article  Google Scholar 

  • Tremsin AS, Muhlbauer MJ, Schillinger B, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB (2010b) High resolution stroboscopic neutron radiography at the FRM-II ANTARES facility. Nucl Sci IEEE Trans 57:2955–2962

    Article  Google Scholar 

  • Vogel S (2000) A Rietveld-Approach for the Analysis of Neutron Time-of-Flight Transmission Data. Ph.D., Thesis at University of Kiel, Germany (http://macau.uni-kiel.de/receive/dissertation_diss_00000330)

  • Wagner V, Kouril Z, Lukas P, Mikula P, Saroun J, Strunz P, Vrana M (1997) Residual strain/stress analysis by means of energy-dispersive neutron transmission diffraction (EDNTD). Proc. SPIE 2867, International Conference Neutrons in Research and Industry, pp 168–171, doi:10.1117/12.267893

  • Wang DQ (1996) Strain measurement using neutron diffraction. The Open University

    Google Scholar 

  • Weiss RJ, Clark JR, Corliss L, Hastings J (1952) Neutron diffraction studies of cold-worked brass. J Appl Phys 23:1379–1382

    Article  Google Scholar 

  • Williams SH, Hilger A, Kardjilov N, Manke I, Strobl M, Douissard PA, Martin T, Riesemeier H, Banhart J (2012) Detection system for microimaging with neutrons. J Instrum 7:P02014

    Article  Google Scholar 

  • Winsberg L, Meneghetti D, Sidhu SS (1949) Total neutron cross sections of compounds with different crystalline structures. Phys Rev 75:975–979 (published online Epub03/15/)

    Google Scholar 

  • Woracek R, Penumadu D, Kardjilov N, Hilger A, Strobl M, Wimpory R C, ... & Banhart J (2011) Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading. J Appl Phys 109(9):093506

    Google Scholar 

  • Woracek R, Penumadu D, Kardjilov N, Hilger A, Boin M, Banhart J, Manke I (2014) 3D Mapping of Crystallographic Phase Distribution using Energy—Selective Neutron Tomography. Adv Mater, 26(24):4069–4073

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kardjilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kardjilov, N., Lehmann, E., Strobl, M., Woracek, R., Manke, I. (2017). Neutron Imaging. In: Kardjilov, N., Festa, G. (eds) Neutron Methods for Archaeology and Cultural Heritage. Neutron Scattering Applications and Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-33163-8_16

Download citation

Publish with us

Policies and ethics