Skip to main content

A General Overview of Pesticides in Soil: Requirement of Sensitive and Current Residue Analysis Methods

  • Conference paper
  • First Online:
Soil in Criminal and Environmental Forensics

Part of the book series: Soil Forensics ((SOFO))

Abstract

Pesticides are chemical agents used to destroy or control pests, both in agriculture and in public health. Despite the beneficial effects associated with the usage of them, these chemicals may cause adverse effects to humans and to the nature. In addition, many pesticides are persistent and may therefore bioaccumulate in the environment; also some of them are important carcinogens and mutagens. In the world, alarming levels of pesticides have been detected in air, water, soil, as well as in foods and biological materials. Because of the special character as sink and source of contaminants soil is a critical medium, and as an environmental contaminant that comes into contact with soil intensively, pesticides are one of the important issues of environmental soil forensics. The different classes and wide range of pesticides and environmental mediums containing them have made essential the development of sensitive and current methods for the analysis of pesticide residues for environmental monitoring and forensic investigations. This chapter describes pesticides, historical background of pesticide usage, pesticides classification, environmental impacts and fate of pesticides, misuse and overuse of them, and provides a general brief overview on the soil sampling and pre-treatment, the basic principles of the conventional and also modern extraction approaches (including their advantages and disadvantages), and the chromatographic-based determination techniques used for pesticide residue analysis in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acikkol M, Semen S, Turkmen Z et al (2012) Determination of α-cypermethrin from soil by using HPTLC. JPC-J Planar Chromatogr-Mod TLC 25:48–53

    Article  CAS  Google Scholar 

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Pandey RS, Sharma B (2010) Water pollution with special reference to pesticide contamination in India. J Water Resour Prot 2:432–448

    Article  CAS  Google Scholar 

  • Ali A, Noah RM, Malik SA (2012) Legal implications on sales and purchase, uses and misuses of agro chemicals in smallholders’ agro production in Malaysia. Procedia Soc Behav Sci 68:156–163

    Article  Google Scholar 

  • Anastassiades M, Lehotay SJ, Stajnbaher D et al (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘’Dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    CAS  PubMed  Google Scholar 

  • Andreu V, Pico Y (2004) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. TrAC-Trend Anal Chem 23:772–789

    Article  CAS  Google Scholar 

  • Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E et al (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Article  CAS  Google Scholar 

  • Babic S, Petrovic M, Kastelan-Macan M (1998) Ultrasonic solvent extraction of pesticides from soil. J Chromatogr A 823:3–9

    Article  CAS  Google Scholar 

  • Blum WEH, Büsing J, Montanarella L (2004) Research needs in support of the European thematic strategy for soil protection. TrAC-Trends Anal Chem 23:680–685

    Article  CAS  Google Scholar 

  • Bouaid A, Ramos L, Gonzalez MJ et al (2001) Solid-phase microextraction method for the determination of atrazine and four organophosphorus pesticides in soil samples by gas chromatography. J Chromatogr A 939:13–21

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Davidson G, Grant WP et al (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Tech 19:275–283

    Article  CAS  Google Scholar 

  • Chen ZM, Wang YH (1996) Chromatographic methods for the determination of pyrethrin and pyrethroid pesticide residues in crops, foods and environmental samples. J Chromatogr A 754:367–395

    Article  CAS  PubMed  Google Scholar 

  • Commission of the European Communities (2006) Thematic strategy for soil protection. Brussels, 22.9.2006 COM(2006)231 final

    Google Scholar 

  • Curran WS (1998) Persistence of herbicides in soil, Agronomy facts 36. Penn State College of Agricultural Science, The Pennsylvania State University, Pennsylvania

    Google Scholar 

  • Dabrowska H, Dabrowski L, Biziuk M et al (2003) Solid-phase extraction clean-up of soil and sediment extracts for the determination of various types of pollutants in a single run. J Chromatogr A 1003:29–42

    Article  CAS  PubMed  Google Scholar 

  • Dagnac T, Bristeau S, Jeannot R et al (2005) Determination of chloroacetanilides, triazines and phenylureas and some of their metabolites in soils by pressurised liquid extraction, GC–MS/MS, LC–MS and LC–MS/MS. J Chromatogr A 1067:225–233

    Article  CAS  PubMed  Google Scholar 

  • Dean JR (1998) Extraction methods for environmental analysis. Wiley, Chichester

    Google Scholar 

  • Dean JR, Xiong G (2000) Extraction of organic pollutants from environmental matrices: selection of extraction technique. Trends Anal Chem 19:553–564

    Article  CAS  Google Scholar 

  • Demircan V, Yılmaz H (2005) The analysis of pesticide use in apple production in Isparta province in terms of economy and environmental sensitivity perspective (in Turkish). Ekoloji 14:15–25

    Google Scholar 

  • den Hond F, Groenewegen P, van Straalen N (eds) (2003) Pesticides: problems, improvements, alternatives. Blackwell, London

    Google Scholar 

  • Dewailly E, Ayotte P, Bruneau S et al (2000) Susceptibility to infections and immune status in inuit infants exposed to organochlorines. Environ Health Perspect 108:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Prisco G, Cavaliere V, Annoscia D et al (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS 110(46):18466–18471

    Article  PubMed  PubMed Central  Google Scholar 

  • Doong RA, Liao PL (2001) Determination of organochlorine pesticides and their metabolites in soil samples using headspace solid-phase microextraction. J Chromatogr A 918:177–188

    Article  CAS  PubMed  Google Scholar 

  • Drozzdzynski D, Kowalska J (2009) Rapid analysis of organic farming insecticides in soil and produce using ultra-performance liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 394:2241–2247

    Article  Google Scholar 

  • Durovic R, Dordevic T (2011) Modern extraction techniques for pesticide residues determination in plant and soil samples. In: Stoytcheva M (ed) Pesticides in the modern world – trends in pesticides analysis. InTech, Rijeka, Croatia, pp 221–246

    Google Scholar 

  • EL-Saeid MH, AL-Dosari SA (2010) Monitoring of pesticide residues in Riyadh dates by SFE, MSE, SFC, and GC techniques. Arab J Chem 3(3):179–186

    Article  CAS  Google Scholar 

  • Esteve-Turrillas FA, Aman CS, Pastor A et al (2004) Microwave-assisted extraction of pyrethroid insecticides from soil. Anal Chim Acta 522:73–78

    Article  CAS  Google Scholar 

  • FAO (2002) International code of conduct on the distribution and use of pesticides. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Forero-Mendieta JR, Castro-Vargas HI, Parada-Alfonso F et al (2012) Extraction of pesticides from soil using supercritical carbon dioxide added with methanol as co-solvent. J Supercrit Fluid 68:64–70

    Article  CAS  Google Scholar 

  • Fortes C, Aprea C (2011) Cancer risks from residential exposure to pesticides. In: Nriagu JO (ed) Encyclopedia of environmental health, vol 1. Elsevier, Burlington, pp 489–497

    Google Scholar 

  • Fountain ED, Wratten SD (2013) Conservation biological control and biopesticides in agricultural? Reference module in earth systems and environmental sciences. doi:10.1016/B978-0-12-409548-9.00539-X

    Google Scholar 

  • Fuentes E, Báez ME, Labra R (2007) Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil. J Chromatogr A 1169(1–2):40–46

    Article  CAS  PubMed  Google Scholar 

  • Glare T, Caradus J, Gelernter W et al (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258

    Article  CAS  PubMed  Google Scholar 

  • Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50:977–987

    Article  Google Scholar 

  • Grovermann C, Schreinemachers P, Berger T (2013) Quantifying pesticide overuse from farmer and societal points of view: an application to Thailand. Crop Prot 53:161–168

    Article  Google Scholar 

  • Gupta RC, Malik JK, Milatovic D (2011) Organophosphate and carbamate pesticides. In: Gupta RC (ed) Reproductive and developmental toxicology. Elsevier, London, pp 471–486

    Chapter  Google Scholar 

  • Hao H, Sun B, Zhao Z (2008) Effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides in soils. Environ Pollut 156:1046–1052

    Article  CAS  PubMed  Google Scholar 

  • Hardin MR, Benrey B, Coll M et al (1995) Arthropod pest resurgence: an overview of potential mechanisms. Crop Prot 14:3–18

    Article  Google Scholar 

  • Henny CJ, Blus LJ, Kolbe EJ et al (1985) Organophosphate insecticide (famphur) topically applied to cattle kills magpies and hawks. J Wildl Manage 49:648–658

    Article  CAS  Google Scholar 

  • Hernandez F, Beltran J, Lopez FJ et al (2000) Use of solid-phase microextraction for the quantitative determination of herbicides in soil and water samples. Anal Chem 15(72):2313–2322

    Google Scholar 

  • Hogendoorn EA, Huls R, Dijkman E et al (2001) Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection: use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils. J Chromatogr A 938:23–33

    Article  CAS  Google Scholar 

  • Hou L, Lee HK (2004) Determination of pesticides in soil by liquid-phase micro-extraction, and gas chromatography–mass spectrometry. J Chromatogr A 1038:37–42

    Article  CAS  PubMed  Google Scholar 

  • Jarman WM, Ballschmiter K (2012) From coal to DDT: the history of the development of the pesticide DDT from synthetic dyes till silent spring. Endeavour 36:131–142

    Article  PubMed  Google Scholar 

  • Jett DA (2011) Neurotoxic pesticides and neurologic effects. Neurol Clin 29:667–677

    Article  PubMed  Google Scholar 

  • Kerle EA, Jenkins JJ, Vogue PA (1994) Understanding pesticide persistence and mobility for groundwater and surface water protection. Oregon State University, Corvallis

    Google Scholar 

  • Lambropoulou DA, Albanis TA (2007) Liquid-phase micro-extraction techniques in pesticide residue analysis. J Biochem Biophys Methdos 70:195–228

    Article  CAS  Google Scholar 

  • Landau-Ossondo M, Rabia N, Jos-Pelage J et al (2009) Why pesticides could be a common cause of prostate and breast cancers in the French Caribbean Island, Martinique. An overview on key mechanisms of pesticide-induced cancer. Biomed Pharmacother 63:383–395

    Article  CAS  PubMed  Google Scholar 

  • Lesueur C, Gartner M, Mentler A et al (2008) Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography–mass spectrometry and liquid chromatography–ion trap–mass spectrometry. Talanta 75:284–293

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lu Y, Shi Y et al (2011) Environmental pollution by persistent toxic substances and health risk in an industrial area of China. J Environ Sci 23:1359–1367

    Article  CAS  Google Scholar 

  • Li Y, Dong F, Liu X et al (2013) Development of a multi-residue enantiomeric analysis method for 9 pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Hazard Mater 250–251:9–18

    Article  PubMed  Google Scholar 

  • Li ZY, Zhang ZC, Zhou QL et al (2002) Fast and precise determination of phenthoate and its enantiomeric ratio in soil by the matrix solid-phase dispersion method and liquid chromatography. J Chromatogr A 977:17–25

    Article  CAS  PubMed  Google Scholar 

  • Linde CD (1994) Physico-chemical properties and environmental fate of pesticides. Environmental Protection Agency, Sacramento

    Google Scholar 

  • Luo L, Shao B, Zhang J (2010) Pressurized liquid extraction and cleanup procedure for the determination of pyrethroids in soils using gas chromatography/tandem mass spectrometry. Anal Sci 26:461–465

    Article  CAS  PubMed  Google Scholar 

  • MacBean C (ed) (2012) The pesticide manual: a world compendium, 16th revised edn. British Crop Protection Council, Alton

    Google Scholar 

  • Moreno DV, Ferrera ZS, Rodriguez JJS (2006) Microwave assisted micellar extraction coupled with solid phase microextraction for the determination of organochlorine pesticides in soil samples. Anal Chim Acta 571:51–57

    Article  CAS  PubMed  Google Scholar 

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharm 268:157–177

    Article  CAS  Google Scholar 

  • Möder M, Popp P, Eisert R et al (1999) Determination of polar pesticides in soil by solid phase microextraction coupled to high-performance liquid chromatography electrospray/mass spectrometry. Fresenius J Anal Chem 363:680–685

    Article  Google Scholar 

  • Muir P (2012) A history of pesticide use. Oregon State University. http://people.oregonstate.edu/~muirp/pesthist.htm. Accessed 21 June 2012

  • Naeeni MH, Yamini Y, Rezaee M (2011) Combination of supercritical fluid extraction with dispersive liquid–liquid microextraction for extraction of organophosphoruspesticides from soil and marine sediment samples. J Supercrit Fluids 57:219–226

    Article  CAS  Google Scholar 

  • Ozcan S, Tor A, Aydin ME (2009) Application of miniaturised ultrasonic extraction to the analysis of organochlorine pesticides in soil. Anal Chim Acta 640:52–57

    Article  CAS  PubMed  Google Scholar 

  • Padron-Sanz C, Halko R, Sosa-Ferrera Z et al (2005) Combination of microwave assisted micellar extraction and liquid chromatography for the determination of organophosphorous pesticides in soil samples. J Chromatogr A 1078:13–21

    Article  CAS  Google Scholar 

  • Paíga P, Morais S, Correia M et al (2008) A multiresidue method for the analysis of carbamate and urea pesticides from soils by microwave-assisted extraction and liquid chromatography with photodiode array detection. Anal Lett 41:1751–1772

    Article  Google Scholar 

  • Panuwet P, Siriwong W, Prapamontol T et al (2012) Agricultural pesticide management in Thailand: status and population health risk. Environ Sci Policy 17:72–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pico Y, Blasco C, Font G (2004) Environmental and food applications of LC–tandem mass spectrometry in pesticide-residue analysis: an overview. Mass Spectrom Rev 23:45–85

    Article  CAS  PubMed  Google Scholar 

  • Pinto CG, Laespada MEF, Martín SH et al (2010) Simplified QuEChERS approach for the extraction of chlorinated compounds from soil samples. Talanta 81:385–391

    Article  CAS  PubMed  Google Scholar 

  • Pizzuttia IR, de Kok A, Zanella R et al (2007) Method validation for the analysis of 169 pesticides in soya grain, without clean up, by liquid chromatography–tandem mass spectrometry using positive and negative electrospray ionization. J Chromatogr A 1142:123–136

    Article  Google Scholar 

  • Pozo O, Pitarch E, Sancho JV et al (2001) Determination of the herbicide 4-chloro-2-methylphenoxyacetic acid and its main metabolite, 4-chloro-2-methylphenol in water and soil by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 923:75–85

    Article  CAS  PubMed  Google Scholar 

  • Rahman S (2013) Pesticide consumption and productivity and the potential of IPM in Bangladesh. Sci Total Environ 445–446:48–56

    Article  PubMed  Google Scholar 

  • Richter P, Sepulveda B, Oliva R et al (2003) Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography–mass spectrometry. J Chromatogr A 994:169–177

    Article  CAS  PubMed  Google Scholar 

  • Romero-Gonzalez R, Garrido Frenich A, Martínez Vidala JL et al (2011) Simultaneous determination of pesticides, biopesticides and mycotoxins in organic products applying a quick, easy, cheap, effective, rugged and safe extraction procedure and ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 1218:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Rouvière F, Buleté A, Cren-Olivé C et al (2012) Multiresidue analysis of aromatic organochlorines in soil by gas chromatography–mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction. Talanta 93:336–344

    Article  PubMed  Google Scholar 

  • Salemi A, Shafiei E, Vosough M (2012) Optimization of matrix solid phase dispersion coupled with gas chromatography electron capture detection for determination of chlorinated pesticides in soil. Talanta 101:504–509

    Article  CAS  PubMed  Google Scholar 

  • Santos FJ, Galceran MT (2002) The application of gas chromatography to environmental analysis. TrAC-Trend Anal Chem 21:672–685

    Article  CAS  Google Scholar 

  • Saxton GN, Engel B (2005) A survey of soil sample handling procedures of state pesticide regulatory agencies. Environ Forensic 6:105–108

    Article  CAS  Google Scholar 

  • Shen X, Cai J, Gao Y et al (2006) Determination of organophosphorus pesticides in soil by MMSPD-GC-NPD and confirmation by GC-MS. Chromatographia 64:71–77

    Article  CAS  Google Scholar 

  • Stroud RK (1998) Wildlife forensics and the veterinary practitioner. Semin Avian Exot Pet 7:182–192

    Article  Google Scholar 

  • Sun K, Zhao Y, Gao B et al (2009) Organochlorine pesticides and polybrominated diphenyl ethers in irrigated soils of Beijing, China: levels, inventory and fate. Chemosphere 77:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Theocharopoulos SP, Wagner G, Sprengart J et al (2001) European soil sampling guidelines for soil pollution studies. Sci Total Environ 264:51–62

    Article  CAS  PubMed  Google Scholar 

  • Theocharopoulos SP, Mitsios IK, Arvanitoyannis I (2004) Traceabilty of environmental soil measurements. TrAC-Trends Anal Chem 23:237–251

    Article  CAS  Google Scholar 

  • Unsworth J (2010) History of pesticide use. http://agrochemicals.iupac.org/index.php? option=com_sobi2&sobi2Task=sobi2Details&catid=3&sobi2Id=31. Accessed 21 June 2012

  • US EPA (2012a) Agricultural pesticides. US Environmental Protection Agency. http://www.epa.gov/oecaagct/ag101/croppesticideuse.html. Accessed 10 Dec 2012

  • US EPA (2012b) Types of pesticides. US Environmental Protection Agency. http://www.epa.gov/pesticides/about/types.htm#chemical. Accessed 21 June 2012

  • Yasin M, Baugh PJ, Bonwick GA et al (1996) Analytical method development fort he determination of synthetic pyrethroid insecticides in soil by gas chromatography–mass spectrometry operated in negative-ion chemical-ionization mode. J Chromatogr A 754:235–243

    Article  CAS  Google Scholar 

  • Wait AD (2000) Evolution of organic analytical methods in environmental forensic chemistry. Environ Forensic 1:37–46

    Article  CAS  Google Scholar 

  • Wang X, Zhao X, Liu X et al (2008) Homogeneous liquid-liquid extraction combined with gas chromatography-electron capture detector for the determination of three pesticide residues in soils. Anal Chim Acta 620:162–169

    Article  CAS  PubMed  Google Scholar 

  • Zacharia TJ (2011) Identity, physical and chemical properties of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world – trends in pesticides analysis. InTech, Rijeka, pp 1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevcan Semen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Semen, S., Mercan, S., Acikkol, M. (2016). A General Overview of Pesticides in Soil: Requirement of Sensitive and Current Residue Analysis Methods. In: Kars, H., van den Eijkel, L. (eds) Soil in Criminal and Environmental Forensics. Soil Forensics. Springer, Cham. https://doi.org/10.1007/978-3-319-33115-7_11

Download citation

Publish with us

Policies and ethics