Skip to main content

Hole Transport Material (HTM) Free Perovskite Solar Cell

  • Chapter
  • First Online:
Hole Conductor Free Perovskite-based Solar Cells

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1598 Accesses

Abstract

At the same time of the perovskite discovery to function as efficient light harvester in the solar cell, Etgar et al. [1] first proposed a heterojunction device structure of FTO/TiO2/CH3NH3PbI3/Au in which CH3NH3PbI3 was used as a p-type semiconductor and 500 nm mesoscopic TiO2 was used as an n-type semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etgar L, Peng G, Xue Z, Liu B, Nazeeruddin MK, Grätzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. J Am Chem Soc 134:17396–17399

    Article  Google Scholar 

  2. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347

    Article  Google Scholar 

  3. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  4. Laben WA, Etgar L (2013) Depleted hole conductor-free lead halide iodide heterojunction solar cell. Energy Environ Sci 6:3249–3253

    Article  Google Scholar 

  5. Aharon S, Gamliel S, Cohen B, Etgar L (2014) Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys 16:10512–10518

    Article  Google Scholar 

  6. Cohen Bat-El, Aharon Sigalit, Dymshits Alexander, Etgar L (2015) Impact of anti-solvent treatment on carrier density in efficient hole conductor free perovskite based solar cells. J Phys Chem C. doi:10.1021/acs.jpcc.5b10994

    Google Scholar 

  7. Cohen BE, Gamliel S, Etgar L (2014) Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. APL Mater 2(081502)

    Google Scholar 

  8. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Graẗzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499:316–319

    Article  Google Scholar 

  9. Luber JE, Buriak MJ (2013) Reporting performance in organic photovoltaic devices. ACS Nano 7:4708–4714

    Article  Google Scholar 

  10. Mashkoor A, Jiong Z, Javed I, Wei M, Lin X, Rigen M, Jing Z, Mashkoor A et al (2009) Conductivity enhancement by slight indium doping in ZnO nanowires for optoelectronic applications. Phys D Appl Phys 42:165406

    Article  Google Scholar 

  11. Strukov1 DB, Snider1 GS, Stewart1 DR, Williams S (2008) The missing memristor found. Nature 453:80–83

    Google Scholar 

  12. Jeon NJ, Noh HJ, Kim CY, Yang SW, Ryu S, SeokNam S (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13:897–903

    Article  Google Scholar 

  13. Tripathi N, Yanagida M, Shirai Y, Masuda T, Hanb L, Miyanoa K (2015) Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method. J Mater Chem A 3:12081–12088

    Article  Google Scholar 

  14. Gamliel S, Dymshits A, Aharon S, Terkieltaub E, Etgar L (2015) Micrometer sized perovskite crystals in planar hole conductor free solar cells. J Phys Chem C. doi:10.1021/acs.jpcc.5b07554

    Google Scholar 

  15. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–525

    Article  Google Scholar 

  16. Kim H-S, Mora-Sero I, Pedro VG, Santiago FF, Juarez-Perez EJ, Park N-G, Bisquert J (2013) Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat Commun 4:2242

    Google Scholar 

  17. De Wolf S, Holovsky J, Moon SJ, Löper P, Niesen B, Ledinsky M, Haug FJ, Yum JH, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039. doi:10.1021/jz500279b

    Article  Google Scholar 

  18. Cohen Bat-El, Aharon Sigalit, Dymshits Alexander, Etgar L (2015) Impact of anti-solvent treatment on carrier density in efficient hole conductor free perovskite based solar cells. J Phys Chem C. doi:10.1021/acs.jpcc.5b10994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioz Etgar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Etgar, L. (2016). Hole Transport Material (HTM) Free Perovskite Solar Cell. In: Hole Conductor Free Perovskite-based Solar Cells. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32991-8_3

Download citation

Publish with us

Policies and ethics