Skip to main content

Organo-Metal Lead Halide Perovskite Properties

  • Chapter
  • First Online:
Hole Conductor Free Perovskite-based Solar Cells

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The inorganic perovskite compounds were discovered in 1839 and named after the Russian mineralogist L.A. Perovski, who first characterized the structure of perovskite compounds with general crystalline formula of ABX3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitzi DB, Feild CA, Harrison WTA, Guloy AM (1994) Conducting tin halides with a layered organic-based perovskite structure. Nature 369:467–469

    Article  Google Scholar 

  2. Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z (2008) Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B 64:702–707

    Article  Google Scholar 

  3. Yin WJ, Yang JH, Kang J, Yan Y, Wei S-H (2015) Halide perovskite materials for solar cells: a theoretical review. J Mater Chem A 3:8926–8942

    Article  Google Scholar 

  4. Liu X, Zhao W, Cui H, Xie Y, Wang Y, Xu T, Huang F (2015) Organic–inorganic halide perovskite based solar cells—revolutionary progress in photovoltaics. Inorg Chem Front 2:315–335

    Article  Google Scholar 

  5. Mitzi DB (2000) Templating and structural engineering in organic–inorganic perovskites. J Chem Soc, Dalton Trans 1:1–12

    Google Scholar 

  6. Knutson JL, Martin JD, Mitzi DB (2005) Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg Chem 44:4699–4705

    Article  Google Scholar 

  7. Kim H-S, Lee C-R, Im J-H, Lee K-B, Moehl T, Marchioro A, Moon S-J, Baker R-H, Yum J-H, Moser JE, Grätzel M, Park N-G (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci Rep 2:591

    Google Scholar 

  8. Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A (2014) Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci 7:1377–1381

    Article  Google Scholar 

  9. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    Article  Google Scholar 

  10. Kitazawa N, Watanabe Y, Nakamura Y (2002) Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals. J Mater Sci 37:3585–3587

    Article  Google Scholar 

  11. Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G (2014) NH2CH1⁄4NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater 26:1485–1491

    Article  Google Scholar 

  12. Im J-H, Chung J, Kim S-J, Park N-G (2012) Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res Lett 7:353

    Article  Google Scholar 

  13. Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG (2014) Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 136:8094–8099

    Article  Google Scholar 

  14. Im J-H, Lee CR, Lee J-W, Park S-W, Park N-G (2011) 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093

    Google Scholar 

  15. Kojima A, Ikegami M, Teshima K, Miyasaka T (2012) Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem Lett 41:397–399

    Article  Google Scholar 

  16. Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347

    Article  Google Scholar 

  17. Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344

    Article  Google Scholar 

  18. Kim H-S, Mora-Sero I, Pedro VG, Santiago FF, Juarez-Perez EJ, Park N-G, Bisquert J (2013) Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat Commun 4:2242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioz Etgar .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Etgar, L. (2016). Organo-Metal Lead Halide Perovskite Properties. In: Hole Conductor Free Perovskite-based Solar Cells. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32991-8_1

Download citation

Publish with us

Policies and ethics