Skip to main content

Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

  • Chapter
  • First Online:
Remote Sensing and Water Resources

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 55))

Abstract

Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multisatellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (0.25° × 0.25°) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aires F, Papa F, Prigent C (2013) A long-term, high-resolution wetland dataset over the Amazon basin, downscaled from a multi-wavelength retrieval using SAR. J Hydrometeorol 14:594–6007

    Google Scholar 

  • Aires F, Papa F, Prigent C, Crétaux JF, Bergé-Nguyen M (2014) Characterization and downscaling of the inundation extent over the Inner Niger delta using a multi-wavelength retrievals and Modis data. J Hydrometeorol 27:1958–1979. doi:10.1175/JCLI-D-13-00161.1

    Google Scholar 

  • Bartsch A, Trofaier A, Hayman G, Sabel D, Schlaffer S, Clark D, Blyth E (2012) Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes. Biogeosciences 9:703–714. doi:10.5194/bg-9-703-2012

    Google Scholar 

  • Bartholomé E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from earth observation data. Int J Remote Sens 26:1959–1977

    Google Scholar 

  • Bergé-Nguyen M, Crétaux J-F (2015) Inundations in the inner Niger delta: monitoring and analysis using MODIS and global precipitation datasets. Remote Sens. doi:10.3390/rs70x000x

  • Biancamaria S, Lettenmaier DP, Pavelsky TM (2015) The SWOT mission and capabilities for land hydrology. Surv Geophys (in press)

    Google Scholar 

  • Birkett CM (1998) Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34. doi:10.1029/98WR00124

    Google Scholar 

  • Bouvet A, Le Toan T (2011) Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River delta. Remote Sens Environ 115(4):1090–1101. doi:10.1016/j.rse.2010.12.014

    Google Scholar 

  • Bousquet P et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443:439–443. doi:10.1038/nature05132

    Google Scholar 

  • Committee on Earth Observation Satellites (CEOS) (2013) Ad-hoc Disasters Team, CEOS disaster risk management observation strategy, Issue 2.1 Convention on Biological Diversity (2014) Earth Observation for biodiversity monitoring: a review of current approaches and future opportunities for tracking progress towards the Aichi Biodiversity Targets, CBD Technical Series No. 72. http://www.cbd.int/doc/publications/cbd-ts-72-en

  • Decharme B, Douville H, Prigent C, Papa F, Aires F (2008) A new river flooding scheme for global climate applications: offline validation over South America. J Geophys Res 113:D11110. doi:10.1029/2007JD009376

  • Decharme B, Alkama R, Papa F, Faroux S, Douville, Prigent C (2011) Global off-line evaluation of the ISBA-TRIP flood model. Clim Dyn 38:1389–1412. doi:10.1007/s00382-011-1054-9

    Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51(5):2388–2397. doi:10.4319/lo.2006.51.5.2388

    Google Scholar 

  • Fjrtoft R, Gaudin JM, Pourthié N, Lalaurie JC, Mallet A, Nouvel JF, Martinot-Lagarde J, Oriot H, Borderies P, Ruiz C, Daniel D (2014) KaRIn on SWOT: characteristics of near-nadir Ka-band interferometric SAR imagery. IEEE Trans Geosci Remote Sens 52(4):2172–2185. doi:10.1109/TGRS.2013.2258402

    Google Scholar 

  • Fluet-Chouinard E, Lehner B, Rebelo L-M, Papa F, Hamilton SK (2015) Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Rem Sens Environ 158:348–361

    Google Scholar 

  • Frappart F, Papa F, Famiglietti SJ, Prigent C, Rossow WB, Seyler F (2008) Interannual variations of river water storage from a multiple satellite approach: a case study for the Rio Negro River basin. J Geophys Res 113. doi:10.1029/2007JD009438

  • Fu LL, Cazenave A (2001) Satellite altimetry and earth science. A handbook of techniques and application. Academic Press, London

    Google Scholar 

  • Fu LL, Alsdorf DE, Morrow R, Rodríguez E, Mognard NM (2012) SWOT: the surface water and ocean topography mission. JPL publication 12-05

    Google Scholar 

  • Giddings L, Choudhury BJ (1989) Observation of hydrological feature with Nimbus-7 37 GHz data applied to South America. Int J Remote Sens 10:1673–1686

    Google Scholar 

  • Global Earth Observations (2013) The GEOSS water strategy, from observations to decision, executive summary and full report. ftp://ftp.earthobservations.org/TEMP/Water/

  • Henderson FM, Lewis AJ (2008) Radar detection of wetland ecosystems: a review. Int J Remote Sens 29(20):5809–5835. doi:10.1080/01431160801958405

    Google Scholar 

  • Hess LL, Melack JM, Novob EMLM, Barbosac CCF, Gastil M (2003) Dualseason mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87:404–428

    Google Scholar 

  • Jain SK, Saraf AK, Goswami A, Ahmad T (2006) Flood inundation mapping using NOAA AVHRR data. Water Resour Manag 20(6):949–959

    Google Scholar 

  • Kuenzer C, Gue H, Huth J, Leinenkugel P, Li X, Cech S (2013) Flood mapping and flood dynamic of the Mekong delta: ENVISAT ASAR- WSM based time series analyses. Remote Sens 5:687–715. doi:10.3390/rs5020687

    Google Scholar 

  • Lee H, Durand MT, Jung HC, Alsdorf D, Shum CK, Sheng Y (2010) Characterization of surface water storage changes in Arctic lakes using simulated SWOT measurements. Int J Remote Sens 31(14):3931–3953. doi:10.1080/01431161.2010.483494

    Google Scholar 

  • Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22

    Google Scholar 

  • Melton JR et al (2013) Present state of global wetland extent and wetland methane modelling: conclusions from a model inter- comparison project (WETCHIMP). Biogeosciences 10:753–788. doi:10.5194/bg-10-753-2013

    Google Scholar 

  • Mialon A, Royer A, Fily M (2005) Wetland seasonal dynamics and interannual variability over northern high latitudes derived from microwave satellite data. J Geophys Res 110. doi:10.1029/2004JD005697

  • McCarthy J, Gumbricht T, McCarthy TS (2005) Ecoregion classification in the Okavango Delta, Botswana from multitemporal remote sensing. Int J Remote Sens 26:43394357

    Google Scholar 

  • Nakaegawa T (2012) Comparison of water-related land cover types in six 1-km global land cover dataset. J Hydro Meteorol. doi:10.1175/JHM-D-10-05036.1

    Google Scholar 

  • Papa F, Legresy B, Remy F (2003) Use of the Topex-Poseidon dual-frequency radar altimeter over land surfaces. Remote Sens Environ 87:136–147. doi:10.1016/S0034-4257(03)00136-6

    Google Scholar 

  • Papa F, Prigent C, Rossow WB, Legresy B, Remy F (2006a) Inundated wetland dynamics over boreal regions from remote sensing: the use of TopexPoseidon dual frequency radar altimeter observations. Int J Remote Sens 27:4847–4866. doi:10.1080/01431160600675887

    Google Scholar 

  • Papa F, Prigent C, Durand F, Rossow WB (2006b) Wetland dynamics using a suite of satellite observations: a case study of application and evaluation for the Indian Subcontinent. Geophys Res Lett 33:L08401. doi:10.1029/2006GL025767

  • Papa F, Prigent C, Rossow WB (2007) Ob River flood inundations from satellite observations: a relationship with winter snow parameters and river runoff. J Geophys Res 112. doi:10.1029/2007JD008451

  • Papa F, Prigent C, Rossow WB (2008) Monitoring flood and discharge variations in the large Siberian Rivers from a multi-satellite technique. Surv Geophys. doi:10.1007/s10712-008-9036-0

    Google Scholar 

  • Papa F, Prigent C, Jimenez C, Aires T, Rossow WB (2010) Interannual variability of surface water extent at global scale, 1993–2004. J Geophys Res 115. doi:10.1029/2009JD012674

  • Pekel JF, Cottam A, Gorelick N, Belward A (2015) 30 Years global scale mappingof surface water dynamics at 30 m resolution. Mapping water bodies from space conference Frascati Italy. http://www.conftool.pro/mwbs2015/sessions.php

  • Pedinotti V, Boone A, Decharme B, Cretaux JF, Mognard N, Panthou G, Papa F, Tanimoun BA (2012) Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets. Hydrol Earth Syst Sci 16:1745–1773. doi:10.5194/hess-16-1745-2012

    Google Scholar 

  • Prigent C, Matthews E, Aires F, Rossow WB (2001) Remote sensing of global wetland dynamics with multiple satellite data sets. Geophys Res Lett 28:4631–4634

    Google Scholar 

  • Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations. J Geophys Res 1993–2000:112. doi:10.1029/2006JD00784

  • Prigent C, Papa F, Aires F, Jimenez C, Rossow WB, Matthews E (2012) Changes in land surface water dynamics since the 1990s and relation to population pressure. Geophys Res Lett 39:5. doi:10.1029/2012GL051276

    Google Scholar 

  • Ringeval B, de NobletDucoudré N, Ciais P, Bousquet P, Prigent P, Papa F, Rossow WB (2010) An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Global Biogeochem Cycles 24:GB2003. doi:10.1029/2008GB003354

    Google Scholar 

  • Ringeval B et al (2012) Modelling subgrid wetland in the ORCHIDEE global land surface model: evaluation against rive discharges and remotely sensed data. Geosci Model Dev Discuss 5:683–735

    Google Scholar 

  • Rodríguez E (2015) Surface water and ocean topography mission (SWOT), science requirements document. JPL document D-61923. JPL D-61923, Feb. 12, 2015, retrieved from https://swot.jpl.nasa.gov/files/swot/SRD021215 Aug 24, (2015)

  • Sakamoto T, Nguyen NV, Kotera A, Ohno H, Ishitsuka N, Yokozawa M (2007) Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong delta from MoDIS time-series imagery. Remote Sens Environ 109:295–313

    Google Scholar 

  • Santoro M, Wegmuller U (2014) Multi-temporal synthetic aperture radar metrics applied to map open water bodies. IEEE J Sel Top Appl Earth Obs Remote Sens 7:3225–3238. doi:10.1109/JSTARS.2013.2289301

    Google Scholar 

  • Sippel SJ, Hamilton SK, Melack JM, Novo EMM (1998) Passive microwave observations of inundation area and the area/stage relation in the Amazon river floodplain. Int J Remote Sens 19:3055–3074

    Google Scholar 

  • Schroeder R, Rawlins MA, McDonald KC, Podest E, Zimmermann R, Kueppers M (2010) Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data. Environ Res Lett 5:015003. doi:10.1088/1748-9326/5/1/015003

    Google Scholar 

  • Shiklomanov I (1993) World fresh water resources. In: Gleick Peter H (ed) Water in crisis: a guide to the world’s fresh water resource. Oxford University Press, New York

    Google Scholar 

  • United Nations—Water (2007) Coping with water scarcity. Challenge of the twenty-first century (http://www.fao.org/nr/water/docs/escarcity)

  • Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402. doi:10.1002/2014GL060641

    Google Scholar 

  • Wania R et al (2013) Present state of global wetland extent and wetland methane modelling: methodology of a model intercomparison project (WETCHIMP). Geosci Model Dev 6:617–641. doi:10.5194/gmd66172013

  • Xiao X et al (2005) Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens Environ 100:95–113

    Google Scholar 

  • Xiao X et al (2006) Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ 95:480–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Prigent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prigent, C., Lettenmaier, D.P., Aires, F., Papa, F. (2016). Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography). In: Cazenave, A., Champollion, N., Benveniste, J., Chen, J. (eds) Remote Sensing and Water Resources. Space Sciences Series of ISSI, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-32449-4_7

Download citation

Publish with us

Policies and ethics