Skip to main content

Lake Volume Monitoring from Space

  • Chapter
  • First Online:
Remote Sensing and Water Resources

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 55))

Abstract

Lakes are integrators of environmental change occurring at both the regional and global scale. They present a wide range of behavior on a variety of timescales (cyclic and secular) depending on their morphology and climate conditions. Lakes play a crucial role in retaining and stocking water, and because of the significant global environmental changes occurring at several anthropocentric levels, the necessity to monitor all morphodynamic characteristics [e.g., water level, surface (water contour) and volume] has increased substantially. Satellite altimetry and imagery are now widely used together to calculate lake and reservoir water storage changes worldwide. However, strategies and algorithms to calculate these characteristics are not straightforward, and specific approaches need to be developed. We present a review of some of these methodologies by using lakes over the Tibetan Plateau to illustrate some critical aspects and issues (technical and scientific) linked to the observation of climate change impact on surface waters from remote sensing data. Many authors have measured water variation using the limited remote sensing measurements available over short time periods, even though the time series are probably too short to directly link these results with climate change. Indeed, there are many processes and factors, like the influence of lake morphology, that are beyond observation and are still uncertain. The time response for lakes to reach a new state of equilibrium is a key aspect that is often neglected in current literature. Observations over a long period of time, including maintaining a constellation of comprehensive and complementary satellite missions with service continuity over decades, are therefore necessary especially when the ground gauge network is too limited. In addition, the design of future satellite missions with new instrumental concepts (e.g., SAR, SARin, Ka band altimetry, Ka interferometry) will also be suitable for complete monitoring of continental waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarca-del-Rio R, Crétaux J-F, Berge-Nguyen M, Maisongrande P (2012) Does the Titicaca Lake still control the Poopo lake water levels? An investigation using satellite altimetry, and MODIS data (2000–2009). Remote Sens Lett 3(8):707–714

    Google Scholar 

  • Abileah R, Vignudelli S, Scozzari A (2011) A completely remote sensing approach to monitoring reservoirs water volume. Int Water Technol J 1:63–77

    Google Scholar 

  • Adrian R, O’Reilly CM, Zagarese H et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54(6):2283–2297

    Google Scholar 

  • Aladin NV, Crétaux J-F, Plotnikov IS, Kouraev AV, Smurov AO, Cazenave A, Egorov AN, Papa F (2005) Modern hydro-biological state of the Small Aral Sea. Environmetrics 16:1–18. doi:10.1002/env.709

    Google Scholar 

  • Alsdorf DE, Birkett CM, Dunne T, Melack J, Hess L (2001) Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys Res Lett 28(14):2671–2674

    Google Scholar 

  • Altmann G, Rowland JC, Wilson CJ, Verbyla D, Charsley-Groffman L (2010) Quantification of inter-annual and inter-seasonal variability of lake areas within discontinuous permafrost of the Yukon Flats, Alaska. Abstract H41B-1090 presented at 2010 Fall Meeting, AGU, San Francisco, California, 13–17 December

    Google Scholar 

  • Arsen A, Crétaux J-F, Berge-Nguyen M, Abarca del Rio R (2014) Remote sensing derived bathymetry of Lake Poopó. Remote Sens 6(1):407–420

    Google Scholar 

  • Arsen A, Cretaux J-F, Abarca Del Rio R (2015) Use of SARAL/AltiKa over mountainous lakes, intercomparison with Envisat mission. Mar Geodes 38(1):534–548. doi:10.1080/01490419.2014.1002590

    Google Scholar 

  • Aus Der Beck T, Voss F, Flörke M (2011) Modelling the impact of global change on the hydrological system of the Aral Sea basin. Phys Chem Earth 36(13):684–695. doi:10.1016/j.pce.2011.O3.004

  • Baghdadi N, Lemarquand N, Abdallah H, Bailly JS (2011) The relevance of GLAS/ICESat elevation data for the monitoring of river networks. Remote Sens 3:708–720

    Google Scholar 

  • Balsamo G, Saigao R, Dutra E, Boussetta S, Stockdale T, Potes M (2012) On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus Ser A Meteorol Oceanogr 9:15829. doi:10.3402/tellusa.v64i0.15829

    Google Scholar 

  • Bates PD, Neal JC, Alsdorf D, Schumann GJP (2014) Observing global surface water flood dynamics. Surv Geophys 35(3):839–852

    Google Scholar 

  • Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multimission altimetry. Geophys Res Lett 32:L16401. doi:10.1029/2005GL022814

  • Biancamaria S, Andreadis KM, Durand M, Clark EA, Rodriguez E, Mognard NM, Alsdorf DE, Lettenmaier DP, Oudin Y (2010) Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE J Special Issue Microw Remote Sens Land Hydrol Res Appl 3(1):6–19. doi:10.1109/JSTARS.2009.2034614

    Google Scholar 

  • Birkett CM (1995) Contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J Geophys Res 100(C12):25179–25204

    Google Scholar 

  • Birkett CM (1998) Contribution of the Topex NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour Res 34(5):1223–1239

    Google Scholar 

  • Birkett CM, Beckley B (2010) Investigating the Performance of the JASON-2/OSTM Radar Altimeter over Lakes and Reservoirs. Mar Geodesy 33(1):204–238

    Google Scholar 

  • Birkett CM, Murtugudde R, Allan T (1999) Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys Res Lett 26:1031–1034

    Google Scholar 

  • Bliss A, Hock R, Radić V (2014) Global response of glacier runoff to twenty-first century climate change. J Geophys Res Earth Surf 119(4):717–730

    Google Scholar 

  • Bonnefond P, Exertier P, Laurain O et al (2010) Absolute calibration of Jason-1 and JASON-2Altimeters in Corsica during the formation flight phase. Mar Geod 33(S1):80–90

    Google Scholar 

  • Boschetti M, Nutini F, Manfron G, Brivio PA, Nelson A (2014) Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems. PLoS ONE 9(2):e88741. doi:10.1371/journal.pone.0088741

    Google Scholar 

  • Bowling LC, Lettenmaier DP (2010) Modeling the effects of lakes and wetlands on the water balance of Arctic environments. J Hydrometeorol 11(2):276–295. doi:10.1175/2009JHM1084.1

    Google Scholar 

  • Brenner AC, Bentley CR, Csatho BM, Harding DJ, Hofton MA, Minster J, Roberts L, Saba JL, Schutz R, Thomas RH, Yi D, Zwally HJ (2000) Derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights. Algorithm theoretical basis document. Version 3.0. Greenbelt, MD, USA

    Google Scholar 

  • Brown GS (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag 25:67–74. doi:10.1109/TAP.1977.1141536

    Google Scholar 

  • Calmant S, Seyler F, Cretaux J-F (2008) Monitoring continental surface waters by satellite altimetry. Surv Geophys 29(4–5):247–269. doi:10.1007/s10712-008-9051-1

    Google Scholar 

  • Chavez PS Jr (1989) Radiometric calibration of landsat thematic mapper multispectral images. Photogramm Eng Remote Sens 55:1285–1294

    Google Scholar 

  • Chavez PS Jr (1996) Image-based atmospheric corrections-revisited and improved. Photogramm Eng Remote Sens 62:1025–1036

    Google Scholar 

  • Cheng K-C, Kuo C-Y, Tseng H-Z et al (2010) Lake surface height Calibration of Jason-1 and Jason-2 over the Great Lakes. Mar Geod 33(S1):186–203

    Google Scholar 

  • Coe MT, Birkett CM (2005) Water resources in the Lake Chad basin: prediction of river discharge and lake height from satellite radar altimetry. Water Resour Res. doi:10.1029/2003WR002543

  • Crétaux J-F, Birkett CM (2006) lake studies from satellite altimetry. C R Geosci. doi:10.1016/J.crte.2006.08.002

    Google Scholar 

  • Cretaux J-F, Jelinski W, Calmant S, Kouraev AV, Vuglinski VV, Bergé Nguyen M, Gennero M-C, Nino F, Abarca-Del-Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in Near Real Time water level and storage variations from remote sensing data. J Adv Space Res 47(9):1497–1507. doi:10.1016/j.asr.2011.01.004

    Google Scholar 

  • Cretaux J-F, Letolle R, Bergé-Nguyen M (2013) History of Aral Sea level variability and current scientific debates. Glob Planet Changes 11:99–113

    Google Scholar 

  • Cretaux J-F, Biancamaria S, Arsen A, Bergé-Nguyen M, Becker M (2015) Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin. Environ Res Lett 10(1):015002. doi:10.1088/1748-9326/10/1/015002

    Google Scholar 

  • Crétaux J-F, Kouraev AV, Papa F, Bergé Nguyen M, Cazenave A, Aladin NV, Plotnikov IS (2005) Water balance of the Big Aral sea from satellite remote sensing and in situ observations. J Great Lakes Res 31(4):520–534

    Google Scholar 

  • Crétaux J-F, Calmant S, Romanovski V, Perosanz F, Tashbaeva S, Bonnefond P, Moreira D, Shum CK, Nino F, Bergé-Nguyen M, Fleury S, Gegout P, Abarca Del Rio R, Maisongrande P (2011) Absolute calibration of Jason radar altimeters from GPS kinematic campaigns over Lake Issykkul. Mar Geod 34(3–4):291–318. doi:10.1080/01490419.2011.585110

    Google Scholar 

  • Crétaux J-F, Bergé-Nguyen M, Calmant S, Romanovski VV, Meyssignac B, Perosanz F, Tashbaeva S, Arsen A, Fund F, Martignago N, Bonnefond P, Laurain O, Morrow R, Maisongrande P (2013) Calibration of Envisat radar altimeter over Lake Issykkul. J Adv Space Res 51(8):1523–1541. doi:10.1016/j.asr.2012.06.039

    Google Scholar 

  • De Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311(5769):1917–1921

    Google Scholar 

  • Downing JA (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29(1):9–24

    Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg J (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397. doi:10.4319/lo.2006.51.5.2388

    Google Scholar 

  • Duan Z, Bastiaanssen WGM (2013) Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens Environ 134:403–416

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z-I, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182. doi:10.1017/S1464793105006950

    Google Scholar 

  • Eriksson M, Jianshu X, Shrestha AB, Vaidya RA, Nepal S, Sandstrom K (2009) The changing Himalayas: impact of climate change on water resources and livelihoods in the greater Himalayas. ICIMOD, Kathmandu

    Google Scholar 

  • Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006) Results of ENVISAT RA-2 derived levels, validation over the Amazon basin. Remote Sens Environ 100:252–264

    Google Scholar 

  • Gao H, Birkett CM, Lettenmeir DP (2012) Global monitoring of large reservoir storage from satellite remote sensing. Water Resour Res 48:W09504. doi:10.1029/2012WR012063

  • Gao T, Kang S, Cuo L, Zhang T, Zhang G, Zhang Y, Sillanpaa M (2015) Simulation and analysis of glacier runoff and mass balance in the Nam Co basin, southern Tibetan Plateau. J Glaciol 61(227):447

    Google Scholar 

  • Halbfass W (1914) Das S¨ usswasser der Erde (The freshwater of the Earth). Druch und Verlag von Philipp Reclam jun, Leipzig, p 189

    Google Scholar 

  • Huang L, Liu J, Shao Q, Liu R (2011) Changing inland lakes responding to climate warming in northern Tibetan Plateau. Clim Change 24:479–502. doi:10.1007/s10584-011-0032-x

    Google Scholar 

  • Hwang C, Peng M-F, Ning J, Luo J, Sui C-H (2005) Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO. Geophys J Int 161:1–11

    Google Scholar 

  • Jarihani AA, Callow JN, Johansen K, Gouweleeuw B (2013) Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. J Hydrol 505: 78–90. ISSN 0022-1694. Doi:10.1016/j.jhydrol.2013.09.010

    Google Scholar 

  • Ji L, Zhang L, Wylie B (2009) Analysis of dynamic thresholds for the normalized difference water index. Photogramm Eng Remote Sens 75:1307–1317

    Google Scholar 

  • Kang S, Xu Y, You Q, Flu¨gel W, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5:8. doi:10.1088/1748-9326/5/1/015101

    Google Scholar 

  • Kleinherenbrink M, Ditmar PG, Lindenbergh RC (2014) Retracking Cryosat data in the SARIn mode and robust lake level extraction. Remote Sens Environ 152:38–50

    Google Scholar 

  • Kleinherenbrink M, Lindenbergh RC, Ditmar PG (2015) Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J Hydrol 521:119–131

    Google Scholar 

  • Koblinsky CJ, Clarke RT, Brenner AC, Frey H (1993) Measurement of river level variations with satellite altimetry. Water Resour Res 29(6):1839–1848. doi:10.1029/93WR00542

    Google Scholar 

  • Kouraev AV, Semovski SV, Shimaraev MN, Mognard NM, Legresy B, Remy F (2007) Ice regime of lake Baikal from historical and satellite data: influence of thermal and dynamic factors. Limnol Oceanogr 52(3):1268–1286

    Google Scholar 

  • Krause P, Biskop S, Helmschrot J, Flu¨gel W-A, Kang S, Gao T (2010) Hydrological system analysis and modeling of tha Nam-Co basin in Tibet. Adv. Geosci 27:29–36. doi:10.5194/adgeo-27-29-2010

    Google Scholar 

  • Kropáček J, Braun A, Kang S, Feng C, Ye Q, Hochschild V (2012) Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. Int J Appl Earth Obs Geoinf 17:3–11. doi:10.1016/j.jag.2011.10.001

    Google Scholar 

  • Laxon S (1994) Sea ice altimeter processing scheme at the EODC. Int J Remote Sens 15(4):915–924

    Google Scholar 

  • Lee H, Durand M, Jung HC, Alsdorf D, Shum CK, Sheng T (2010) Characterization of surface water storage changes in Arctic lakes using simulated SWOT measurements. Int J Remote Sens 31(14):3931–3953. doi:10.1080/01431161.2010.483494

    Google Scholar 

  • Lee H, Shum C-K, Tseng K-H, Guo J-Y, Kuo C-Y (2011) Present day lake level variation from Envisat altimetry over the North eastern Qinghai-Tibetan plateau: links with precipitation and temperature. Terr Atmos Ocean Sci 22(2):169–175. doi:10.3319/TAO.2010.08.09.01(TibXS)

  • Legresy B, Remy F (1997) Surface characteristics of the Antartic ice sheet and altimetric observations. J Glaciol 43(144):197–206

    Google Scholar 

  • Lehner B, Do¨ll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22. doi:10.1016/j.jhydrol.2004.03.028

    Google Scholar 

  • Lei Y, Yao T, Bird BW, Yang K, Zhai J, Sheng Y (2013a) Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J Hydrol 483:61–67

    Google Scholar 

  • Lei Y, Yao T, Bird BW, Yang K, Zhai J, Sheng Y (2013b) Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution. J Hydrol 483:61–67

    Google Scholar 

  • Lei Y, Yang K, Wang B, Sheng Y, Bird BW, Zhang G, Tian L (2014) Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim Change 125(2):281–290. doi:10.1007/s10584-014-1175-3

    Google Scholar 

  • Li XY, Xu HY, Sun YL, Zhang DS, Yang ZP (2007) Lake-level change and water balance analysis at Lake Qinghai, West China during recent decades. Water Resour Manag 21:1505–1516. doi:10.1007/s11269-006-9096-1

    Google Scholar 

  • Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y (2008) Cryosphere change in China. Glob Planet Change 62:210–218

    Google Scholar 

  • Li S, Zhan H, Lai Y, Sun Z, Pei W (2014) The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming. J Geophys Res Earth Surf 119(4):836–853

    Google Scholar 

  • Liao J, Shen G, Li Y (2013) Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. Int J Digit Earth 6(6):534–549

    Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20(14):1729–1742

    Google Scholar 

  • Liu J, Wang S, Yu S, Yang D, Zhang L (2009a) Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Global Planet Change 67:209–217

    Google Scholar 

  • Liu J, Kang S, Gong T, Lu A (2009b) Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet. Hydrol Earth Syst Sci Discuss 6:5445–5469

    Google Scholar 

  • Liu J, Wang Z, Gong T, Uygen T (2012) Comparative analysis of hydroclimatic changes in glacier-fed rivers in the Tibet and Bhutan-Himalayas. Quat Int 282:104–112

    Google Scholar 

  • López-Moreno JI, Fontaneda S, Bazo J et al (2014) Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru. Glob Planet Change 112:1–11

    Google Scholar 

  • Ma R, Duan H, Hu C, Feng X, Li A, Ju W, Jiang J, Yang G (2010) A half-century of changes in China’s lakes: global warming or human influence? Geophys Res Lett 37:L24106. doi:10.1029/2010GL045514

    Google Scholar 

  • Mason IM, Guzkowska MAJ, Rapley CG, Street-Perrot FA (1994) The response of lake levels and areas to climate change. Clim Change 27:161–197

    Google Scholar 

  • McDonald CP, Rover JA, Stets EG, Striegl RG (2012) The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of the global lake extent. Limnol Oceanogr 57:597–606. doi:10.4319/lo.2012.57.2.0597

    Google Scholar 

  • McFeeters SK (1996) The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432

    Google Scholar 

  • Medina C, Gomez-Enri J, Alonso J, Villares P (2008) Water level fluctuations derived from Envisat Radar altimetry (RA-2) and in situ measurements in a subtropical water body: lake Izabal (Guatemala). RSE. doi:10.1016/J.rse.2008.05.001

    Google Scholar 

  • Mertikas SP, Ioannides RT, Tziavos IN et al (2010) Statistical models and latest results in the determination of the absolute bias for the radar altimeters of Jason satellites using the Gavdos facility. Mar Geod 33(S1):114–149

    Google Scholar 

  • Meybeck M (1995) Global distribution of lakes. In: Lerman A, Imboden DM, Gat JR (eds) Physics and chemistry of lakes. Springer, Berlin, pp 1–36

    Google Scholar 

  • Morris CS, Gill SK (1994) Evaluation of the Topex/Poseidon altimeter system over the great Lakes. J Geophys Res 99(C12):24527–24539

    Google Scholar 

  • Neckel N, Kropáček J, Bolch T, Hochschil V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ Res Lett 9(1):014009

    Google Scholar 

  • Nicholson SE, Yin X (2002) Mesoscale patterns of rainfall, cloudiness and evaporation over the Great lakes of East Africa, Kluwer Academic Publishers, The East African great lakes: limnology, paleolimnology and biodiversity, Advance in global change research, vol 12

    Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Syst Man Cybern 9(1):62–66

    Google Scholar 

  • Ouma YO, Tateishi R (2006) A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM data. Int J Remote Sens 27(15):3153–3181

    Google Scholar 

  • Pandey RK, Crétaux J-F, Bergé-Nguyen M, Mani Tiwari V, Drolon V, Papa F, Calmant S (2014) Water level estimation by remote sensing for 2008 flooding of the Kosi river. Int J Remote Sens 35(2):424–440. doi:10.1080/01431161.2013.870678

    Google Scholar 

  • Phan VH, Lindenbergh R, Menenti M (2011) ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int J Appl Earth Observ Geoinf. doi:10.1016/j.jag.2011.09.015

    Google Scholar 

  • Phan VH, Lindenbergh RC, Menenti M (2013) Geometric dependency of Tibetan lakes on glacial runoff. Hydrol Earth Syst Sci Discuss 10:729–768. doi:10.5194/hessd-10-729-2013

    Google Scholar 

  • Rast W, Straskraba M (2000) Lakes and reservoirs, similarities, differences and importance. Short series on planning and management of lakes and reservoirs, UNEP-IETC (International Environment Technological Center)/ILEC (International Lake Environment Committee Foundation), vol 1, 24 p, ISBN: 4-906356-27-3 (available at http://www.ilec.or.jp/en/pubs/p2/lake-resvr)

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359

    Google Scholar 

  • Ricˇko M, Birkett CM, Carton JA, Cretaux J-F (2012) Intercomparison and validation of continental water level products derived from satellite radar altimetry. J Appl Remote Sens 6:061710. doi:10.1117/1.JRS.6.061710

    Google Scholar 

  • Robertson DM, Ragotzkie RA (1990) Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat Sci 52(4):360–380

    Google Scholar 

  • Rodriguez E (2015) Surface Water and Ocean Topography project, science requirement document, release February 2015, JPL D-61923

    Google Scholar 

  • Sakamoto T, Nguyen NV, Kotera A, Ohno H, Ishitsuka N, Yokozawa M (2007) Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens Environ 109(3):295–313

    Google Scholar 

  • Schindler DW (2009) Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr 54(6):2349–2358

    Google Scholar 

  • Schwatke C, Dettmering D, Bosch W, Seitz F (2015) Kalman filter approach for estimating water level time series over inland waters using multi-mission satellite altimetry. HESS Discuss 12:4813–4855. doi:10.5194/hessd-12-4813-2015

    Google Scholar 

  • Seekell DA, Carr JA, Gudasz C, Karlsson J (2014) Upscaling carbon dioxide emissions from lakes. Geophys Res Lett 41(21):7555

    Google Scholar 

  • Silva JS, Calmant S, Seyler F, Moreira DM, Oliveira D, Monteiro A (2014) Radar altimetry aids managing gauge networks. Water Resour Manag 28–3:587–603. doi:10.1007/s11269-013-0484-z

    Google Scholar 

  • Sima S, Tajrishy M (2013) Using satellite data to extract volume-area elevation relationships for Urmia Lake, Iran. J Great Lakes Res 39(1):90–99. doi:10.1016/j.jglr.2012.2.013

  • Singh A, Seitz F, Schwatke C (2012) Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry. Remote Sens Environ 123:187–195

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) (2007) The physical science basis. In: Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, IPCC. Cambridge University Press: Cambridge

    Google Scholar 

  • Song X, Huang C, Sexton JO, Feng M, Narasimhan R, Channan S, Townshend JR (2011) An assessment of global forest cover maps using regional higher-resolution reference datasets. In: Proceedings of IEEE international geoscience and remote sensing symposium, 752–755

    Google Scholar 

  • Song C, Huang B, Ke L (2013) Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens Environ 135:25–35

    Google Scholar 

  • Song C, Huang B, Ke L, Richards KS (2014a) Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J Hydrol 514:131–144

    Google Scholar 

  • Song C, Huang B, Ke L (2014b) Inter-annual changes of alpine inland lake water storage on the Tibetan Plateau: detection and analysis by integrating satellite altimetry and optical imagery. Hydrol Process 28(4):2411–2418

    Google Scholar 

  • Song C, Huang B, Richards K, Ke L, Hien Phan V (2014c) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour Res 50(4):3170–3186

    Google Scholar 

  • Song C, Ye Q, Cheng X (2015) Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. Sci Bull 60(14):1287–1297

    Google Scholar 

  • Street-Perrott FA, Guzkowska MAJ, Mason IM, Rapley CG (1986) Response of lake levels to climatic change—past, present and future. In: Titus JG (ed) Effects of changes in stratospheric ozone and global climate, vol. 3 Climate Change, Proceedings of the United Nations/Environmental Protection Agency International Conference on Health and Environmental Effects of Ozone Modification and Climate Change, Washington DC, USA, 16-20 June 1986, EPA/UNEP, 211–216

    Google Scholar 

  • Tarpanelli A, Brocca L, Barbetta S, Faruolo M et al (2015) Coupling MODIS and radar altimetry data for discharge estimation in poorly gauged river basins. IEEE Trans Geosci Remote Sens 8(1):141–148. doi:10.1109/JSTARS.2014.2320582

    Google Scholar 

  • Tierney JE, Smerdon JE, Anchukaitis KJ, Seager R (2013) Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493(7432):389–392

    Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6part2):2298–2314

    Google Scholar 

  • Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396–6402. doi:10.1002/2014GL060641

    Google Scholar 

  • Wan W, Xiao P, Feng X, Li H, Ma R, Duan H, Zhao L (2014) Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin Sci Bull 59(10):1021–1035

    Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation change in East Asia. Geophys Res Lett 35:L14702. doi:10.1029/2008GL034330

  • Wang G, Liu G, Liu LA (2012) Spatial scale effect on seasonal streamflows in permafrost catchments on the Qinghai–Tibet Plateau. Hydrol Process 26(7):973–984

    Google Scholar 

  • Wang X, Gong P, Zhao Y et al (2013) Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens Environ 132:131–144

    Google Scholar 

  • Wei J, Liu S, Guo W, Yao X, Xu J, Bao W, Jiang Z (2014) Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann Glaciol 55(66):213–222

    Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54(6):2273

    Google Scholar 

  • Wingham DJ, Rapley CG, Griffiths H (1986) New techniques in satellite altimeter tracking systems. In: Proceedings of IGARSS’86 Symposium, Zu¨rich, 8–11 Sept 1986, ESA SP-254 (pp 1339–1344)

    Google Scholar 

  • Wu Y, Zhu L (2008) The response of lake-glacier variations to climate change inNam Co Catchment, central Tibetan Plateau, during 1970–2000. J Geogr Sci 18:177–189

    Google Scholar 

  • Wu Y, Zheng H, Zhang B, Chien D, Lei L (2014) Long-term changes of lake level and water budget in the Nam Co Lake basin, Central Tibetan Plateau. J Hydrometeorol 15:1312–1322

    Google Scholar 

  • Xu HQ (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27:3025–3033

    Google Scholar 

  • Xu ZX, Gong TL, Li JY (2008) Decadal trend of climate in the Tibetan Plateau regional temperature and precipitation. Hydrol Process 22:3056–3065

    Google Scholar 

  • Yao T, Pu J, Lu A, Wang Y, Yu W (2007) Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res 39(4):642–650

    Google Scholar 

  • Yao T, Thompson LG, Mosbrugger V, Zhang F et al (2012) Third pole environment (TPE). Environ Dev 3:52–64

    Google Scholar 

  • Ye Q, Zhu L, Zheng H, Naruse R, Zhang X, Kang S (2007) Glacier and lake variations in the YamzhogYumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies. J Glaciol 53(183):673–676

    Google Scholar 

  • Yi Y, Kouraev AV, Shum CK, Vuglinsky VS, Cretaux J-F, Calmant S (2013) The performance of altimeter waveform retrackers at lake Baikal. Terr. Atmos Sci 24(4I):513–519. doi:10.3319/TAO.2012.10.09.01

  • Zhang G, Xie H, Kang S, Yi D, Ackley S (2011a) Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry. RSE 115:1733–1742. doi:10.1016/j.rse.2011.03.005

    Google Scholar 

  • Zhang B, Wu Y, Zhu L, Wang J, Li J, Chen D (2011b) Estimation and trend of water storage at Nam Co Lake, central Tibetan Plateau. J Hydrol 405:161–170

    Google Scholar 

  • Zhang G, Yao T, Xie H, Kang S, Lei Y (2013) Increased mass over the Tibetan Plateau: from lakes or glaciers? Geophys Res Lett 40(10):2125–2130

    Google Scholar 

  • Zhang G, Yao T, Xie H, Wang W, YangW(2015) An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob Planet Change 131:148–157

    Google Scholar 

  • Zwally HJR, Schutz C, Bentley J, Bufton T, Herring J, Minster J, Spinhirne RT (2003) GLAS/ICESat L1B global elevation data, version 33: GLA 06. Boulder, Colorado, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-F. Crétaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crétaux, JF. et al. (2016). Lake Volume Monitoring from Space. In: Cazenave, A., Champollion, N., Benveniste, J., Chen, J. (eds) Remote Sensing and Water Resources. Space Sciences Series of ISSI, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-32449-4_5

Download citation

Publish with us

Policies and ethics