Skip to main content

Genetics of Fruit Softening

  • Chapter
  • First Online:
The Kiwifruit Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Ripe kiwifruit have a soft melting texture that, combined with distinctive flavours, aromas and colours, has made the fruit an international success. A key feature of successful New Zealand cultivars, e.g. Actinidia chinensis var. deliciosa ‘Hayward’ and Actinidia chinensis var. chinensis ‘Hort16A’, is their ability to be stored for long periods both at ambient temperature and in cool storage. In these cultivars, the majority of fruit softening occurs in the apparent absence of ethylene production. In contrast, late ripening is associated with autocatalytic ethylene production, where fruit enter the eating window and then proceed to senescence. The decline in fruit firmness during kiwifruit ripening is largely attributed to the disassembly of the fruit cell wall , which provides cellular rigidity and is responsible for intercellular adhesion. In this review, we consider the key genetic changes that occur during fruit softening in kiwifruit and relate these to changes in the cell wall during the same time period. Understanding these relationships is essential to the development of new kiwifruit cultivars with good postharvest characteristics, as long-storing fruit are relatively rare in A. chinensis var. chinensis and A. chinensis var. deliciosa germplasm material, and most other Actinidia species are characterised by rapid softening and limited shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X et al (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes MDC, Sfakiotakis EM (2002) Ethylene biosynthesis and ripening behaviour of ‘Hayward’ kiwifruit subjected to some controlled atmospheres. Postharvest Biol Technol 26:167–179

    Article  CAS  Google Scholar 

  • Atkinson RG, Johnston SL, Yauk Y-K, Sharma NN, Schröder R (2009) Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biol Technol 51:149–157

    Article  CAS  Google Scholar 

  • Atkinson RG, Gunaseelan K, Wang MY, Luo L, Wang T, Norling CL et al (2011) Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using an ACC-oxidase knockdown line. J Exp Bot 62:3821–3835

    Article  CAS  PubMed  Google Scholar 

  • Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D et al (2012) Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus × domestica) fruit. BMC Plant Biol 12:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Banik M, Bourgault R, Feurtado JA, Toorop P, Hilhorst HWM (2000) Endo-β-mannanase activity increases in the skin and outer pericarp of tomato fruits during ripening. J Exp Bot 51:529–538

    Article  CAS  PubMed  Google Scholar 

  • Bonghi C, Pagni S, Vidrih R, Ramina A, Tonutti P (1996) Cell wall hydrolases and amylase in kiwifruit softening. Postharvest Biol Technol 9:19–29

    Article  CAS  Google Scholar 

  • Bourgault R, Bewley JD (2002) Variation in its C-terminal amino acids determines whether endo-β-mannanase is active or inactive in ripening tomato fruits of different cultivars. Plant Physiol 130:1254–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119

    Article  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  CAS  PubMed  Google Scholar 

  • Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdon J, Pidakala P, Martin P, McAtee PA, Boldingh HL, Hall A et al (2014) Postharvest performance of the yellow-fleshed ‘Hort16A’ kiwifruit in relation to fruit maturation. Postharvest Biol Technol 92:98–106

    Article  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Carey AT, Smith DL, Harrison E, Bird CR, Gross KC, Seymour GB et al (2001) Down-regulation of a ripening-related β-galactosidase gene (TBG1) in transgenic tomato fruits. J Exp Bot 52:663–668

    CAS  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H et al (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9(4):e92644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H et al (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2:e00675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen NJ, Paull RE (2003) Endoxylanase expressed during papaya fruit ripening: purification, cloning and characterization. Funct Plant Biol 30:433–441

    Article  CAS  Google Scholar 

  • Costa F, Cappellin L, Farneti B, Tadiello A, Romano A, Soukoulis C et al (2014) Advances in QTL mapping for ethylene production in apple (Malus × domestica Borkh.). Postharvest Biol Technol 87:126–132

    Article  CAS  Google Scholar 

  • Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL et al (2008) Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genom 9:351

    Article  CAS  Google Scholar 

  • Di Matteo A, Giovane A, Raiola A, Camardella L, Bonivento D, De Lorenzo G et al (2005) Structural basis for the interaction between pectin methylesterase and a specific inhibitor protein. Plant Cell 17:849–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fanutti C, Gidley MJ, Reid JSG (1993) Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1 → 4)-β-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J 3:691–700

    Article  CAS  PubMed  Google Scholar 

  • Fei ZJ, Tang XM, Alba RM, White JA, Ronning CM, Martin GB et al (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59

    Article  PubMed  Google Scholar 

  • Fullerton CG (2015) Kiwifruit softening: A cell wall study. PhD thesis, University of Auckland, New Zealand

    Google Scholar 

  • Giovane A, Quagliuolo L, Castaldo D, Servillo L, Balestrieri C (1990) Pectin methyl esterase from Actinidia chinensis fruits. Phytochemistry 29:2821–2823

    Article  CAS  Google Scholar 

  • Giovane A, Balestrieri C, Quagliuolo L, Castaldo D, Servillo L (1995) A glycoprotein inhibitor of pectin methylesterase in kiwi fruit. Purification by affinity chromatography and evidence of a ripening-related precursor. Eur J Biochem 233:926–929

    Article  CAS  PubMed  Google Scholar 

  • Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Annu Rev Plant Physiol Plant Mol Biol 42:103–128

    Article  CAS  Google Scholar 

  • Günther CS, Chervin C, Marsh KB, Newcomb RD, Souleyre EJF (2011) Characterisation of two alcohol acyltransferases from kiwifruit (Actinidia spp.) reveals distinct substrate preferences. Phytochemistry 72:700–710

    Article  PubMed  CAS  Google Scholar 

  • Hamiaux C, Maddumage R, Middleditch MJ, Prakash R, Brummell DA, Baker EN et al (2014) Crystal structure of kiwellin, a major cell-wall protein from kiwifruit. J Struct Biol 187:276–281

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287

    Article  CAS  Google Scholar 

  • Harker FR, Redgwell RJ, Hallett IC, Murray SH, Carter G (1997) Texture of fresh fruit. Hortic Rev 20:121–224

    Google Scholar 

  • Holdaway-Clarke TL, Weddle NM, Kim S, Robi A, Parris C, Kunkel JG et al (2003) Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J Exp Bot 54:65–72

    Article  CAS  PubMed  Google Scholar 

  • Huang SX, Ding J, Deng DJ, Tang W, Sun HH, Liu DY et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640

    PubMed  PubMed Central  Google Scholar 

  • Ilina N, Alem HJ, Pagano EA, Sozzi GO (2010) Suppression of ethylene perception after exposure to cooling conditions delays the progress of softening in ‘Hayward’ kiwifruit. Postharvest Biol Technol 55:160–168

    Article  CAS  Google Scholar 

  • International Peach Genome I, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant Cell Environ 7:153–164

    CAS  Google Scholar 

  • Jiménez-Bermúdez S, Redondo-Nevado J, Muñoz-Blanco J, Caballero JL, López-Aranda JM, Valpuesta V et al (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol 128:751–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston JW, Gunaseelan K, Pidakala P, Wang M, Schaffer RJ (2009) Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. J Exp Bot 60:2689–2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston SL, Prakash R, Chen NJ, Kumagai MH, Turano HM, Cooney JM et al (2013) An enzyme activity capable of endotransglycosylation of heteroxylan polysaccharides is present in plant primary cell walls. Planta 237:173–187

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ (2010) Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytol 187:44–56

    Article  CAS  PubMed  Google Scholar 

  • Kramer M, Sanders R, Bolkan H, Waters C, Sheeny RE, Hiatt WR (1992) Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Postharvest Biol Technol 1:241–255

    Article  CAS  Google Scholar 

  • Lallu N, Searle AN, MacRae EA (1989) An investigation of ripening and handling strategies for early season kiwifruit (Actinidia deliciosa cv Hayward). J Sci Food Agric 47:387–400

    Article  Google Scholar 

  • Langley KR, Martin A, Stenning R, Murray AJ, Hobson GE, Schuch WW et al (1994) Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity. J Sci Food Agric 66:547–554

    Article  CAS  Google Scholar 

  • Lelièvre JM, Latchè A, Jones B, Bouzayen M, Pech J-C (1997) Ethylene and fruit ripening. Physiol Plant 101:727–739

    Article  Google Scholar 

  • Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh). BMC Plant Biol 13:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae E, Redgwell R (1992) Softening in kiwifruit. Postharvest News Inf 3:49N–52N

    Google Scholar 

  • Maddumage R, Nieuwenhuizen NJ, Bulley SM, Cooney JM, Green SA, Atkinson RG (2013) Diversity and relative levels of actinidin, kiwellin and thaumatin-like allergens in fifteen varieties of kiwifruit (Actinidia). J Agric Food Chem 61:728–739

    Article  CAS  PubMed  Google Scholar 

  • McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79

    Article  PubMed  PubMed Central  Google Scholar 

  • McAtee PA, Richardson AC, Nieuwenhuizen NJ, Gunaseelan K, Hoong L, Chen X et al (2015) The hybrid non-ethylene and ethylene ripening response in kiwifruit (Actinidia chinensis) is associated with differential regulation of MADS-box transcription factors. BMC Plant Biol 15:304

    Article  PubMed  PubMed Central  Google Scholar 

  • McMurchie EJ, McGlasson WB, Eaks IL (1972) Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235–236

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls (Analysis of wall hydrolysis, stress relaxation, and binding). Plant Physiol 107:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miedes E, Herbers K, Sonnewald U, Lorences EP (2010) Overexpression of a cell wall enzyme reduces xyloglucan depolymerization and softening of transgenic tomato fruits. J Agric Food Chem 58:5708–5713

    Article  CAS  PubMed  Google Scholar 

  • Moctezuma E, Smith DL, Gross KC (2003) Antisense suppression of a β-galactosidase gene (TBG6) in tomato increases fruit cracking. J Exp Bot 54:2025–2033

    Article  CAS  PubMed  Google Scholar 

  • Mworia EG, Yoshikawa T, Yokotani N, Fukuda T, Suezawa K, Ushijima K et al (2010) Characterization of ethylene biosynthesis and its regulation during fruit ripening in kiwifruit, Actinidia chinensis ‘Sanuki Gold’. Postharvest Biol Technol 55:108–113

    Article  CAS  Google Scholar 

  • Mworia EG, Yoshikawa T, Salikon N, Oda C, Asiche WO, Yokotani N et al (2012) Low-temperature-modulated fruit ripening is independent of ethylene in ‘Sanuki Gold’ kiwifruit. J Exp Bot 63:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuizen N (2015) Transcriptional and hormonal regulation of fruit flavour in apple and kiwifruit. PhD thesis, University of Auckland, New Zealand

    Google Scholar 

  • Nieuwenhuizen NJ, Chen X-Y, Wang MY, Matich AJ, Perez RL, Allan AC et al (2015) Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol 167:1243–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, Eduardo I, Arús P et al (2008) Identification of melon fruit quality quantitative trait loci using near-isogenic lines. J Am Soc Hort Sci 133:139–151

    Google Scholar 

  • Oeller PW, Lu MW, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439

    Article  CAS  PubMed  Google Scholar 

  • Pech JC, Bouzayen M, Latché A (2008) Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175:114–120

    Article  CAS  Google Scholar 

  • Peng FY, Reid KE, Liao N, Schlosser J, Lijavetzky D, Holt R et al (2007) Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Gene 402:40–50

    Article  CAS  PubMed  Google Scholar 

  • Percy AE, O’Brien IEW, Jameson PE, Melton LD, MacRae EA, Redgwell RJ (1996) Xyloglucan endotransglycosylase activity during fruit development and ripening of apple and kiwifruit. Physiol Plant 96:43–50

    Article  CAS  Google Scholar 

  • Pratt HK, Reid MS (1974) Chinese gooseberry: seasonal patterns in fruit growth and maturation, ripening, respiration and the role of ethylene. J Sci Food Agric 25:747–757

    Article  CAS  Google Scholar 

  • Quesada MA, Blanco-Portales R, Posé S, García-Gago JA, Jiménez-Bermúdez S, Muñoz-Serrano A et al (2009) Antisense down-regulation of the FaPG1 gene reveals an unexpected central role for polygalacturonase in strawberry fruit softening. Plant Physiol 150:1022–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redgwell RJ (1991) Cell wall polysaccharides of kiwifruit Actinidia deliciosa: changes during ripening. PhD thesis, University of Otago, New Zealand

    Google Scholar 

  • Redgwell RJ, Fry SC (1993) Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening. Implications for fruit softening. Plant Physiol 103:1399–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redgwell RJ, Melton LD, Brasch DJ (1988) Cell wall polysaccharides of kiwifruit (Actinidia deliciosa): chemical features in different tissue zones of the fruit at harvest. Carbohydr Res 182:241–258

    Article  CAS  Google Scholar 

  • Redgwell RJ, Melton LD, Brasch DJ (1990) Cell wall changes in kiwifruit following post harvest ethylene treatment. Phytochemistry 29:399–407

    Article  CAS  Google Scholar 

  • Redgwell RJ, Melton LD, Brasch DJ (1991) Cell-wall polysaccharides of kiwifruit (Actinidia deliciosa): effect of ripening on the structural features of cell-wall materials. Carbohydr Res 209:191–202

    Article  CAS  Google Scholar 

  • Redgwell RJ, Melton LD, Brasch DJ (1992a) Cell wall dissolution in ripening kiwifruit (Actinidia deliciosa). Solubilization of the pectic polymers. Plant Physiol 98:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redgwell RJ, Melton LD, Brasch DJ, Coddington JM (1992b) Structures of the pectic polysaccharides from the cell walls of kiwifruit. Carbohydr Res 226:287–302

    Article  CAS  Google Scholar 

  • Redgwell RJ, Fischer M, Kendal E, MacRae EA (1997a) Galactose loss and fruit ripening: high-molecular-weight arabinogalactans in the pectic polysaccharides of fruit cell walls. Planta 203:174–181

    Article  Google Scholar 

  • Redgwell RJ, MacRae EA, Hallett I, Fischer M, Perry J, Harker R (1997b) In vivo and in vitro swelling of cell walls during fruit ripening. Planta 203:162–173

    Article  CAS  Google Scholar 

  • Regiroli G, Vriends P (2007) SmartFreshSM (1-methylcyclopropene) benefits for kiwifruit. Acta Hort 753:745–753

    Article  CAS  Google Scholar 

  • Richardson AC, Boldingh HL, McAtee PA, Gunaseelan K, Luo Z, Atkinson RG et al (2011) Fruit development of the diploid kiwifruit, Actinidia chinensis ‘Hort16A’. BMC Plant Biol 11:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  CAS  PubMed  Google Scholar 

  • Ross GS, Redgwell RJ, Macrae EA (1993) Kiwifruit β-galactosidase: isolation and activity against specific fruit cell-wall polysaccharides. Planta 189:499–506

    Article  CAS  Google Scholar 

  • Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • Schaffer RJ, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S et al (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder R, Atkinson RG (2006) Kiwifruit cell walls: towards an understanding of softening? N Z J For Sci 36:112–129

    Google Scholar 

  • Schröder R, Atkinson RG, Langenkämper G, Redgwell RJ (1998) Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta 204:242–251

    Article  PubMed  Google Scholar 

  • Schröder R, Nicolas P, Vincent SJF, Fischer M, Reymond S, Redgwell RJ (2001) Purification and characterisation of a galactoglucomannan from kiwifruit (Actinidia deliciosa). Carbohydr Res 331:291–306

    Article  PubMed  Google Scholar 

  • Schröder R, Wegrzyn TF, Bolitho KM, Redgwell RJ (2004) Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants. Planta 219:590–600

    Article  PubMed  CAS  Google Scholar 

  • Schröder R, Wegrzyn TF, Sharma NN, Atkinson RG (2006) LeMAN4 endo-β-mannanase from ripe tomato fruit has dual enzyme activity and can act as a mannan transglycosylase or hydrolase. Planta 224:1091–1102

    Article  PubMed  CAS  Google Scholar 

  • Schröder R, Atkinson RG, Redgwell RJ (2009) Re-interpreting the role of endo-β-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Ann Bot 104:197–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith DL, Gross KC (2000) A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiol 123:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DL, Abbott JA, Gross KC (2002) Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening. Plant Physiol 129:1755–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soda I, Hasegawa T, Suzuki T, Ogura N (1986) Detection of polygalacturonase in kiwifruit during ripening. Agric Biol Chem 50:3191–3192

    CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q-M, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavarini S, Degl’Innocenti E, Remorini D, Massai R, Guidi L (2009) Polygalacturonase and β-galactosidase activities in Hayward kiwifruit as affected by light exposure, maturity stage and storage time. Scientia Hort 120:342–347

    Article  CAS  Google Scholar 

  • Tieman DM, Handa AK (1994) Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Physiol 106:429–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-Y, MacRae EA, Wright MA, Bolitho KM, Ross GS, Atkinson RG (2000) Polygalacturonase gene expression in kiwifruit: relationship to fruit softening and ethylene production. Plant Mol Biol 42:317–328

    Article  CAS  PubMed  Google Scholar 

  • Wang KL-C, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl 1):S131–S151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-H, Xu F-X, Feng X-Q, MacArthur RL (2015) Modulation of Actinidia arguta fruit ripening by three ethylene biosynthesis inhibitors. Food Chem 173:405–413

    Article  CAS  PubMed  Google Scholar 

  • Wegrzyn TF, MacRae EA (1992) Pectinesterase, polygalacturonase, and β-galactosidase during softening of ethylene-treated kiwifruit. HortScience 27:900–902

    CAS  Google Scholar 

  • White A, de Silva HN, Requejo-Tapia C, Harker FR (2004) Evaluation of softening characteristics of fruit from 14 species of Actinidia. Postharvest Biol Technol 35:143–151

    Article  Google Scholar 

  • Whittaker DJ, Smith GS, Gardner RC (1995) Three cDNAs encoding S-adenosyl-L-methionine synthetase from Actinidia chinensis. Plant Physiol 108:1307–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker DJ, Smith GS, Gardner RC (1997) Expression of ethylene biosynthetic genes in Actinidia chinensis fruit. Plant Mol Biol 34:45–55

    Article  CAS  PubMed  Google Scholar 

  • Williams MH, Boyd LM, McNeilage MA, MacRae EA, Ferguson AR, Beatson RA et al (2003) Development and commercialization of ‘baby kiwi’ (Actinidia arguta Planch.). Acta Hort 610:81–86

    Article  Google Scholar 

  • Win J (1996) β-Galactosidase in the fruit of Actinidia chinensis. MSc thesis, University of Auckland, New Zealand

    Google Scholar 

  • Xu Z-C, Hyodo H, Ikoma Y, Yao M, Ogawa K (2000) Relation between ethylene-producing potential and gene expression of 1-aminocyclopropane-1-carboxylic acid synthase in Actinidia chinensis and A. deliciosa fruits. J Jpn Soc Hort Sci 69:192–194

    Article  CAS  Google Scholar 

  • Yang S, Xu CJ, Zhang B, Li X, Chen K-S (2007) Involvement of both subgroups A and B of expansin genes in kiwifruit fruit ripening. HortScience 42:315–319

    CAS  Google Scholar 

  • Yin X-R, Chen K-S, Allan AC, Wu R-M, Zhang B, Lallu N et al (2008) Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. J Exp Bot 59:2097–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X-R, Allan AC, Zhang B, Wu R-M, Burdon J, Wang P et al (2009) Ethylene-related genes show a differential response to low temperature during ‘Hayward’ kiwifruit ripening. Postharvest Biol Technol 52:9–15

    Article  CAS  Google Scholar 

  • Yin X-R, Allan AC, Chen K-S, Ferguson IB (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153:1280–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X-R, Allan AC, Xu Q, Burdon J, Dejnoprat S, Chen K-S et al (2012) Differential expression of kiwifruit ERF genes in response to postharvest abiotic stress. Postharvest Biol Technol 66:1–7

    Article  CAS  Google Scholar 

  • Zykwinska AW, Ralet M-CJ, Garnier CD, Thibault J-FJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zykwinska A, Thibault J-F, Ralet M-C (2007) Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. J Exp Bot 58:1795–1802

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross G. Atkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atkinson, R.G., Schröder, R. (2016). Genetics of Fruit Softening. In: Testolin, R., Huang, HW., Ferguson, A. (eds) The Kiwifruit Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-32274-2_16

Download citation

Publish with us

Policies and ethics