Skip to main content

Block Compressive Sensing (BCS) Based Multi-phase Reconstruction (MPR) Framework for Video

  • Conference paper
  • First Online:
Advances in Machine Learning and Signal Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 387))

Abstract

In this paper, a Multi-phase Reconstruction (MPR) framework that uses certain key frames to produce some Side Information (SI) to improve the reconstruction quality of the non-key frames is proposed. After a sequence of frames has been encoded using Block Compressive Sensing (BCS) and transmitted to the host workstation, some SI is produced by first aligning the key frames to the non-key frames. The aligned frames are then fused together using Wavelet to exploit the spatial and temporal correlations between them, and to generate a set of predicted non-key frames. Next, the difference between the initially reconstructed and the predicted non-key frames at the measurement level is calculated. The difference is then decoded to recover a set of residual frames. The reconstruction of the final non-key frames is completed by adding the residual frames to the predicted non-key frames. The experimental results show that the proposed framework is able to outperform other frameworks by 1.5–3.0 dB at lower sub-rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ebrahim M, Chong CW (2014) A comprehensive review of distributed coding algorithms for visual sensor network (VSN), In press, Int J Commun Networks Inf Secur (IJCNIS), 6(2):104–117

    Google Scholar 

  2. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306. doi:10.1109/TIT.2006.871582

    Google Scholar 

  3. Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG (2008) Single pixel imaging via compressive sampling. IEEE Signal Process Mag 25(2):83–91. doi:10.1109/MSP.2007.914730

    Google Scholar 

  4. Candes E, Romberg J (2007) Sparsity and incoherence in compressive sampling. Inverse Prob 23(3):969–985. doi:10.1088/0266-5611/23/3/008

    Article  MathSciNet  MATH  Google Scholar 

  5. Blumensath T, Davies ME (2009) Iterative hard thresholding for compressed sensing. Appl Comput Harmonic Anal. Elsevier, 27(3):10. doi:10.1016/j.acha.2009.04.002

    Google Scholar 

  6. Gan L (2007) Block compressed sensing of natural images. In: Proceedings of the international conference on digital signal processing. Cardiff, UK, pp 403–406, July 2007. doi:10.1109/ICDSP.2007.4288604

  7. Mun S, Fowler JE (2009) Block compressed sensing of images using directional transforms. In: Proceedings of the international conference on image processing. Cairo, Egypt, pp 3021–3024, November 2009. doi:10.1109/ICIP.2009.5414429

  8. Li C (2013) Compressive sensing for 3d data processing tasks: applications, models and algorithms. PhD thesis, Rice University, Houston, Texas, United States. doi:http://hdl.handle.net/1911/70314

  9. Chambolle A, Lions PL (1997) Image recovery via total variation minimization and related problems, Numerische Mathematik Electronic Edition. Springer, 76(2):21. doi:10.1007/s002110050258

    Google Scholar 

  10. Wakin MB, Laska JN, Duarte MF, Baron D, Sarvotham S, Takhar D, Kelly KF, Baraniuk RG (2006) Compressive imaging for video representation and coding. In: Picture coding symposium—PCS 2006. Beijing, China, April 2006

    Google Scholar 

  11. Marcia R, Willet R (2008) Compressive coded aperture video reconstruction. In: Proceeding of European Signal Processing Conference (EUSIPCO)

    Google Scholar 

  12. Park JY, Wakin MB (2009) A multiscale framework for compressive sensing of video. In: Proceedings of the picture coding symposium, pp 1–4, May 2009

    Google Scholar 

  13. Lu W, Vaswani N (2009) Modified compressive sensing for real-time dynamic MR imaging. In: Proceedings of the international conference on image processing (ICIP’09). IEEE, Cairo, Egypt, pp 3045–3048. doi:10.1109/ICIP.2009.5414208

  14. Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61(1):14. doi:10.1002/mrm.21757

    Google Scholar 

  15. Mun S, Fowler JE (2011) Residual reconstruction for block-based compressed sensing of video. In: Storer JA, Marcellin MW (eds) Proceedings of the IEEE data compression conference. Snowbird, UT, pp 183–192, March 2011

    Google Scholar 

  16. Mathworks (2014) Automatic Registration. Retrieved 20 April 2014 from http://www.mathworks.com/help/images/-automatic-registration.html

  17. de Zeeuw P (1998) Wavelet and image fusion. CWI research STW (March 1998), Retrieved 20 April 2014 from Mathworks wfusimg: www.mathworks.com/help/wavelet/ref/wfusimg.html

  18. YUV Video Sequences, http://trace.eas.asu.edu/yuv/. Retrieved 15 Jan 2015

  19. TVAL3, Courtesy Rice University, from http://www.caam.rice.edu/~optimization/L1/TVAL3/

  20. k-t-FOCUSS. Version 1, http://bisp.kaist.ac.kr/research_02.html. Retrieved 15 April 2015

  21. Mc-bcs-spl Version 1.0-1, www.ece.msstate.edu/~fowler/BCSSPL//. Retrieved 15 April 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Ebrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ebrahim, M., Chia, W.C. (2016). Block Compressive Sensing (BCS) Based Multi-phase Reconstruction (MPR) Framework for Video. In: Soh, P., Woo, W., Sulaiman, H., Othman, M., Saat, M. (eds) Advances in Machine Learning and Signal Processing. Lecture Notes in Electrical Engineering, vol 387. Springer, Cham. https://doi.org/10.1007/978-3-319-32213-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32213-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32212-4

  • Online ISBN: 978-3-319-32213-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics