Skip to main content

Visual Servoing for Motion Control of Coralbot Autonomous Underwater Vehicle

  • Chapter
  • First Online:
Quantitative Monitoring of the Underwater Environment

Part of the book series: Ocean Engineering & Oceanography ((OEO,volume 6))

  • 726 Accesses

Abstract

This work focuses on developing two visual servoing algorithms that enable the Coralbot to stabilise itself relative to an area of reef. For this purpose, we present a fast coral reef detector based on supervised machine learning. We extract texture feature descriptors using a bank of Gabor Wavelet filters. We use a database of 621 images of coral reef located in Belize. The Decision Trees algorithm shows a fast execution time among the machine learning algorithms. We use the coral detections to estimate point features and moment features. We use these features through an Image-based approach and a Moment-based approach. We code the coral detector and the visual servoing algorithms in C\({+}{+}\) for obtaining a fast response of the system. We test the system performance through an underwater simulator, UWSim, which is supported by the Robot Operating System, ROS. We obtain promising results using point features instead of moment features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coralbot Team—About coral reefs and current approaches for restoration. http://www.coralbots.org/.

  2. Stough, J. V., Greer, L., & Benson, M. (2012). Texture and color distribution-based classification for live coral detection. In 12th International Coral Reef Symposium.

    Google Scholar 

  3. Marcos, M. S. A., David, L., Peñaflor, E., Ticzon, V., & Soriano, M. (2008). Automated benthic counting of living and non-living components in Ngedarrak Reef, Palau via subsurface underwater video. Journal of Environmental Monitoring and Assessment, 145, 177–184.

    Article  Google Scholar 

  4. Beijbom, O., Edmunds, P. J., Kline, D. I., Mitchell, B. G., & Kriegman, D. (2012). Automated annotation of coral reef survey images. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1170–1177). Rhode Island.

    Google Scholar 

  5. Johnson-Roberson, M., Kumar, S., & Willams, S. (2006). Segmentation and classification of coral for oceanographic surveys: A semi-supervised machine learning approach. In OCEANS 2006Asia Pacific. Singapore: IEEE Press.

    Google Scholar 

  6. Purser, A., Bergmann, M., Lundälv, T., Ontrup, J., & Nattkemper, T. W. (2009). Use of machine-learning algorithms for the automated detection of cold-water coral habitats: A pilot study. Journal of Marine Ecology Progress Series, 397, 241–251.

    Article  Google Scholar 

  7. Tusa, E., Reynolds, A., Lane, D. M., Robertson, N. M., Villegas, H., & Bosnjak, A. (2014). Implementation of a fast coral detector using a supervised machine learning and Gabor Wavelet feature descriptors. Sensor Systems for a Changing Ocean (SSCO), 2014 IEEE, Brest, (pp. 1–6). doi: 10.1109/SSCO.2014.7000371

  8. Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

    MATH  Google Scholar 

  9. Loh, W. Y. (2011). Classification and regression trees. Journal of WIREs Data Mining and Knowledge Discovery, 1, 14–23.

    Article  Google Scholar 

  10. Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. Cambridge: OReilly.

    Google Scholar 

  11. Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Journal of Machine Learning, 63, 3–42.

    Article  MATH  Google Scholar 

  12. Luber, M., Spinello, L., & Arras, K. O. (2011). People tracking in rgb-d data with on-line boosted target models. In International Conference on Intelligent Robots and Systems (IROS). San Francisco: IEEE Press.

    Google Scholar 

  13. Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29, 1189–1232.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Technical Report. International Computer Science Institute.

    Google Scholar 

  15. Chaumette, F., & Hutchinson, S. (2006). Visual servo control, Part I: Basic approaches. IEEE Robotics and Automation Magazine, 13, 82–90.

    Google Scholar 

  16. Tahri, O., & Chaumette, F. (2005). Point-based and region-based image moments for visual servoing of planar objects. IEEE Transactions on Robotics, 21, 1116–1127.

    Google Scholar 

  17. Chaumette, F. (2004). Image moments: A general and useful set of features for visual servoing. IEEE Transactions on Robotics, 20, 713–723.

    Article  Google Scholar 

  18. Tahri, O. (2004). Application of moment to visual servoing and pose estimation. Ph.D. thesis, Rennes.

    Google Scholar 

  19. Lots, J., Lane, D., Trucco, E., & Chaumette, F. (2001). A 2-D visual servoing for underwater vehicle station keeping. In 2001 IEEE International Conference on Robotics and Automation (Vols. I–IV, pp. 2767–2772). Seoul: IEEE Press.

    Google Scholar 

  20. Bakthavatchalam, M., Chaumette, F., Marchand, E., Novotny, F., Saunier, A., Spindler, F., et al. (2012). Geometric transformations and objects. INRIA. http://www.irisa.fr/lagadic/visp/documentation/visp-tutorial-geometric-objects.pdf.

  21. Zhong, J. (2006). PID controller tuning: A short tutorial. http://wwwdsa.uqac.ca/~rbeguena/Systemes_Asservis/PID.pdf.

Download references

Acknowledgments

This work was developed at the Ocean Systems Lab and the Computer Vision Lab in Heriot-Watt University, thanks to the support of the European Commission and the VIBOT Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Tusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tusa, E., Robertson, N.M., Lane, D.M. (2016). Visual Servoing for Motion Control of Coralbot Autonomous Underwater Vehicle. In: Zerr, B., et al. Quantitative Monitoring of the Underwater Environment. Ocean Engineering & Oceanography, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-32107-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32107-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32105-9

  • Online ISBN: 978-3-319-32107-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics