Skip to main content

Mapping Genes of Schizophrenia in Selected Dagestan Isolates

  • Chapter
  • First Online:
Genomic Architecture of Schizophrenia Across Diverse Genetic Isolates

Abstract

Key methods for mapping complex disease genes include haplotype analysis of affected and healthy members of pedigrees and linkage analysis using nonparametric and parametric approaches. Dagestan indigenous ethnics, whose villages were in strict marital and geographical isolation over hundreds of generations, are viable candidates for the implementation of this mapping strategy. The population structures led to high genetic differentiation between these isolates and low genetic diversity within them. Our study indicated that haplotype analysis in schizophrenia (SCZ) pedigrees enables visualization of significantly smaller regions in haplotype blocks in patient’s genealogies, compared to linkage analysis. We combined haplotype and linkage analysis to improve our efforts in finding genomic regions with pathogenic loci during mapping genes of this complex disease. The results obtained from these analyses clearly demonstrate locus and/or allele heterogeneity or homogeneity of SCZ between isolates and within pedigrees with common ancestors. Haplotype analysis was performed using the computer package SimWalk2. Based on genotyped patients and healthy relatives, this program reconstructed the probable haplotypes derived from inaccessible direct ancestors. It is therefore possible to evaluate the numbers of meioses and recombination events in generations. Results obtained suggest that risk alleles within the same short tandem repeat (STR) locus in haplotype blocks found to be associated with same clinical phenotype vary between different genetic isolates. Next steps in the analyses related with genome-wide nonparametric and parametric linkage analyses of STRs with SCZ. The genome-wide nonparametric analyses performed in four isolates indicated that primary isolates generally have greater genetic homogeneity in loci linked with SCZ, in comparison with secondary isolates. Our linkage analysis of pedigrees found that 17 chromosomes out of 22 autosomes have linkage signals with schizophrenia in all four genetic isolates we studied. These results show a nearly twofold reduction in the number of linked loci in genomes, i.e., genomic homogeneity of pathogenic loci linked to schizophrenia in demographically older primary isolates (PIs), in comparison with demographically younger genetically heterogeneous secondary isolates (SIs). From 17 total loci linked with SCZ in all four genetic isolates, in each PI we obtained an average of 4.5 linked loci, while in each SI the mean linked number of loci was 9. Historically young SI, which passed fewer meioses and recombination events in their demographic history, also showed larger genomic regions linked to the SCZ, while the PI accumulated more meioses and recombinants in smaller genomic regions. The number of observed recombinations may consequently be higher in PI, but cannot be identified due to the high genetic homogeneity of these types of isolates. PIs have 1.8 times fewer SCZ-linked genomic regions, as well as smaller sizes of linked genomic regions, compared with SI, indicated by the higher genomic heterogeneity of loci linked with SCZ and by the larger size of linked genomic regions. 10 of the 25 genomic regions linked with SCZ are replicated in two or more of the studied isolates, which supports that revealed pathogenic loci are generalizable for SCZ to ethnogenomic stratification of isolates we study, i.e., demonstrate interpopulation genetic homogeneity in the pathogenic loci of schizophrenia. Most reliable across genetic isolates studied with high LOD scores are linkages at 6p22-p23, 10q26, 17p12-q12, and 22q11.23-q12.3. The linkage results with genome-wide scanned markers in isolates with varying degrees of demographic antiquity and aggregation of SCZ suggest narrowing of the genome region linked with the pathogenic locus as the PI; the greater the number of meiosis and recombinations in the history of the isolate, the greater the probability for detecting a physical linkage of pathogenic loci in the studied genomic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfimova, M. V., Golimbet, V. E., & Mityushina, N. G. (2003). Polymorphism of serotonin receptor (5-HTR2A) gene and productivity of speech associative processes at normal and schizophrenia. Molecular Biology, 37(1), 68–73. Russian.

    Article  CAS  Google Scholar 

  • Andrews, B., et al. (1987). A study of genetic linkage in schizophrenia. Psychological Medicine, 17(2), 363–370.

    Article  Google Scholar 

  • Barr, C. L., Kennedy, J. L., et al. (1994). Linkage study of a susceptibility locus for schizophrenia in the pseudoautosomal region. Schizophrenia Bulletin, 20(2), 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Blair, I. P., Badenhop, R. F., Scimone, A., et al. (2005). Association analysis of transcripts from the bipolar susceptibility locus on chromosome 4q35, exclusion of a pathogenic role for eight positional candidate genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 134(1), 56–59.

    Article  Google Scholar 

  • Blouin, J. L., Dombroski, B. A., et al. (1998). Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nature Genetics, 20, 70–73.

    Article  CAS  PubMed  Google Scholar 

  • Bray, J. D. (2001). Commentary on being positive about schizophrenia. Journal of Psychiatric and Mental Health Nursing, 8(3), 279–280.

    Article  CAS  PubMed  Google Scholar 

  • Bulayeva, K. B. (1991). Genetic basis of human psychophysiology. Moscow: Science.

    Google Scholar 

  • Bulayeva, K., Jorde, L., Ostler, C., et al. (2003a). Genetics and population history of Caucasus populations. Human Biology, 75(6), 837–853.

    Article  PubMed  Google Scholar 

  • Bulayeva, K. B., Leal, S., Pavlova, T. A., et al. (2000). The ascertainment of schizophrenia pedigrees in Daghestan genetic isolates. Journal of Psychiatric Genetics, 5, 100–106.

    Google Scholar 

  • Bulayeva, K. B., Leal, S. M., Pavlova, T. A., et al. (2005). Mapping genes of complex psychiatric diseases in Daghestan genetic isolates. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 132(1), 76–84.

    Article  Google Scholar 

  • Bulayeva, K., Lesch, K.-P., Bulayev, O., Walsh, C., Glatt, S., Gurgenova, F., Omarova, J., Berdichevets, I., & Thompson, P. M. (2015, January 28). Genomic structural variation in linked with intellectual disability regions in a Dagestan genetic isolate. Journal of Neural Transmission. [Epub ahead of print]

    Google Scholar 

  • Bulayeva, K., Marchani, E., Kurbatova, O. L., Watkins, S. W., Bulayev, O. A., & Harpending, H. C. (2008). Genetic bottleneck among Daghestan highlanders migrating to lowlands. CEJM, 8(4), 396–405.

    Google Scholar 

  • Bulayeva, K. B., & Pavlova, T. A. (1993). Behavior genetic differences within and between defined human populations. Behavior Genetics, 23(5), 449–454.

    Article  PubMed  Google Scholar 

  • Bulayeva, K. B., Pavlova, T. A., Charuhilova, S. M., et al. (1996). Genetic and demographic study of mountain populations of Dagestan and its migrants on plain. Interconnection of inbreeding, homozygosity and physiological sensitivity levels. Genetics, 32(1), 93–102. Russian.

    Google Scholar 

  • Bulayeva, K. B., Pavlova, T. A., Dubinin, N. P., et al. (1993). Phenotypic and genetic affinities among ethnic populations in Dagestan (Caucasus, USSR). A comparison of polymorphic, physical, neurophysiological and psychological traits. Annals of Human Biology, 20(5), 455–467.

    Article  CAS  PubMed  Google Scholar 

  • Bulayeva, K. B., Pavlova, T. A., Kurbanov, R. M., et al. (2003b). Genetic and epidemiological studies in the mountainous Dagestan isolates. Genetics, 39(3), 413–422.

    Google Scholar 

  • Bulayeva, K. B., Pavlova, T. A., Kurbanov, R. M., & Bulaev, O. A. (2002, November). Mapping genes of complex diseases in genetic isolates of Dagestan [Article in Russian]. Genetika, 38(11), 1539–1548.

    Google Scholar 

  • Bulayeva, K. B., Pavlova, T. A., & Bulayev, O. A. (1997). Genetic polymorphism in the 3 populations of indigenous people of Dagestan. Genetics, 33(10), 1395–1405. Russian.

    Google Scholar 

  • Cardno, A. G., Holmans, P. A., Rees, M. I., et al. (2001). A genome-wide linkage study of age at onset in schizophrenia. American Journal of Medical Genetics, 105(5), 439–445.

    Article  CAS  PubMed  Google Scholar 

  • Eliez, S., Antonarakis, S. E., Morris, M. A., et al. (2001a). Parental origin of the deletion 22q11.2 and brain development in velocardiofacial syndrome, a preliminary study. Archives of General Psychiatry, 58, 64–68.

    Article  CAS  PubMed  Google Scholar 

  • Eliez, S., Blasey, C. M., et al. (2001b). Velocardiofacial syndrome: Are structural changes in the temporal and mesial temporal regions related to schizophrenia. The American Journal of Psychiatry, 158(3), 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Erdman, J., Shimron-Abarbanell, D., Rietschel, M., et al. (1996). Systematic screening for mutations in the human serotonin 2A (5HT2A) receptor gene identification of two naturally occurring receptor variants and association analysis in schizophrenia. Human Genetics, 97(5), 614–619.

    Article  Google Scholar 

  • Freedman, R., Leonard, S., Olincy, A., et al. (2001). Evidence for the multigenic inheritance of schizophrenia. American Journal of Medical Genetics, 105(8), 794–800.

    Article  CAS  PubMed  Google Scholar 

  • Gadzhiev, A. G. (1971). Anthropology of small populations of Dagestan (p. 368). Makhachkala: Dagestan Branch of the USSR Academy of Science.

    Google Scholar 

  • Gadzhieva, S. S. (1961). Kumiks. History and ethnography study. Moscow: USSR Academy of Sciences. 387 p.

    Google Scholar 

  • Gelernter, J., Pakstis, A. J., & Kidd, K. K. (1995). Linkage mapping of serotonin transporter protein gene SLC6A4 on chromosome 17. Human Genetics, 95(6), 677–680.

    Article  CAS  PubMed  Google Scholar 

  • Giuffra, L. A., & Kidd, K. K. (1989). Linkage analysis in psychiatry. International Review of Psychiatry, 1, 231–242.

    Article  Google Scholar 

  • Glatt, S. J., Faraone, S. V., & Tsuang, M. T. (2003). Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. The American Journal of Psychiatry, 160, 469–476.

    Article  PubMed  Google Scholar 

  • Glatt, S. J., Lasky-Su, J. A., Zhu, S. C., Zhang, R., Zhang, B., Li, J., et al. (2008). Genome-wide linkage analysis of heroin dependence in Han Chinese: Results from wave two of a multi-stage study. Drug and Alcohol Dependence, 98(1–2), 30–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Golimbet, V. E., Aksenov, M. G., Abramova, L. I., et al. (1998). Association of allelic polymorphism of dopamine receptor with mental illness of schizophrenia spectrum and affective disorders. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, 98(12), 32–35.

    CAS  PubMed  Google Scholar 

  • Golimbet, V. E., Alfimova, M. V., Mityushina, N. G., & Asanov, A. Y. (2003). The genes of serotonergic system, features of behavior and mental disorders. Journal of Medical Genetics, (7). Russian.

    Google Scholar 

  • Golimbet, V. E., Alfimova, M. V., Shchebatykh, T. V., et al. (2004). Serotonin transporter polymorphism and depressive-related symptoms in schizophrenia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 126(1), 1–7.

    Article  Google Scholar 

  • Golimbet, V. E., Shcherbatyh, T. W., Abramova, L. I., et al. (2001). The polymorphism of the serotonin transporter gene in families burdened with schizophrenia. Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, 101(10), 40–41.

    CAS  Google Scholar 

  • GutiĂ©rrez, M., Gibert, J., Bobes, J., HerrĂ¡iz, M. L., & FernĂ¡ndez, A. (1998). Risperidone in the treatment of acute exacerbation of schizophrenia symptoms]. Actas Luso Esp Neurol Psiquiatr Cienc Afines, 26(2), 83–89, Spanish.

    Google Scholar 

  • Hastbacka, J., de la Chapelle, A., & Mahtani, M. M. (1994). The diastrophic dysplasia gene encodes a novel sulfate transporter: Positional cloning by fine-structure linkage disequilibrium mapping. Cell, 78(6), 1073–1087.

    Article  CAS  PubMed  Google Scholar 

  • Hill, S. Y., Locke, J., & Zezza, N. (1998). Genetic association between reduced P300 amplitude and the DRD2 dopamine receptor A1 allele in children at high risk for alcoholism. Biological Psychiatry, 43, 40–51.

    Article  CAS  PubMed  Google Scholar 

  • Jorde, L. B. (2000). Linkage disequilibrium and the search for complex disease genes. Genome Research, 10(10), 1435–1444.

    Article  CAS  PubMed  Google Scholar 

  • Jorde, L. B., Kere, J., Nyman, D., & Erikson, A. W. (2000). Gene mapping in isolated populations: New role of old friends? Human Heredity, 50, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Jorde, L. B., Watkins, W. S., & Bamshad, M. J. (2001). Population genomics: A bridge from evolutionary history to genetic medicine. Human Molecular Genetics, 10(20), 2199–2207.

    Article  CAS  PubMed  Google Scholar 

  • Kalsi, G., Brynjolfsson, J., Butler, R., et al. (1995). Linkage analysis of chromosome 22q12-13 in a United Kingdom/Icelandic sample of 23 multiplex schizophrenia families. American Journal of Medical Genetics, 60, 298–301.

    Article  CAS  PubMed  Google Scholar 

  • Karayiorgou, M., Kasch, L., Lasseter, V., et al. (1994). Report from the Maryland Epidemiology Schizophrenia Linkage Study: No evidence for linkage between schizophrenia and a number of candidate and other genomic regions using a complex dominant model. American Journal of Medical Genetics, 54, 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., MacLean, C. J., O’Neill, F. A., et al. (1996). Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish study of high-density schizophrenia families. The American Journal of Psychiatry, 153, 1534–1540.

    Article  CAS  PubMed  Google Scholar 

  • Kendler, K. S., Myers, J. M., et al. (2000). Clinical features of schizophrenia and linkage to chromosomes 5q, 6p, 8p, and 10p in the Irish study of high-density schizophrenia families. American Journal of Psychiatry, 157(3), 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E., & Botstein, D. (1986). Mapping complex genetic traits in humans: New methods using a complete RFLP linkage map. Cold Spring Harbor Symposia on Quantitative Biology, Pt.1, 49–69.

    Article  Google Scholar 

  • Lesch, K. P., Balling, U., Gross, J., Strauss, K., Wolozin, B. L., Murphy, D. L., & Riederer, P. (1994). Organization of the human serotonin transporter gene. Journal of Neural Transmission: General Section, 95(2), 157–162.

    Article  CAS  Google Scholar 

  • Lu, R.-B., Ko, H.-C., Chang, F.-M., et al. (1996). No association between alcoholism and multiple polymorphisms at the dopamine D2 receptor gene (DRD2) in three distinct Taiwanese populations. Biological Psychiatry, 39, 419–429.

    Article  CAS  PubMed  Google Scholar 

  • Marchani, E. E., Watkins, W. S., Bulayeva, K., Harpending, H. C., & Jorde, L. B. (2008). Culture creates genetic structure in the Caucasus: Autosomal, mitochondrial, and Y-chromosomal variation in Daghestan. BMC Genetics, 9(47), 1–13.

    Google Scholar 

  • Mayilyan, K. R., Weinberger, D. R., & Sim, R. B. (2008). The complement system in schizophrenia. Drug News and Perspectives, 21(4), 200–210. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nothen, M. M., Cichon, S., et al. (1993). Excess of homozygosis at the dopamine D3 receptor gene in schizophrenia not confirmed. Journal of Medical Genetics, 30(8), 708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen, M. J., Williams, N. M., & O’Donovan, M. C. (2004). The molecular genetics of schizophrenia: New findings promise new insights. Molecular Psychiatry, 9(1), 14–27. Review.

    Article  CAS  PubMed  Google Scholar 

  • Parsian, A., Suarez, B. K., Isenberg, K., et al. (1997). No evidence for a schizophrenia susceptibility gene in the vicinity near of IL2RB on chromosome 22. American Journal of Medical Genetics, 74, 361–364.

    Article  CAS  PubMed  Google Scholar 

  • Pickard, B., Hollox, E., Malloy, M. P., et al. (2004). A 4q35.2 subtelomeric deletion identified in a screen of patients with co-morbid psychiatric illness and mental retardation. BMC Medical Genetics, 5, 1–7.

    Article  Google Scholar 

  • Prasad, S., Semwal, P., Deshpande, S., et al. (2002). Molecular genetics of schizophrenia: Past, present and future. Journal of Biosciences, 27, 35–52.

    Article  CAS  PubMed  Google Scholar 

  • Pulver, A., Karayiorgou, M., Wolyniec, P., et al. (1994). Sequential strategy to identify a susceptibility gene for schizophrenia: Report of potential linkage on chromosome 22q12-q13.1: Part 1. American Journal of Medical Genetics, 54, 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Riley, B., Mogudi-Carter, M., Jenkins, T., & Williamson, R. (1996). No evidence for linkage of chromosome 22 markers to schizophrenia in southern African Bantu-speaking families. American Journal of Medical Genetics, 67, 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Risch, N., & Giuffra, L. (1992). Model misspecification and multipoint linkage analysis. Human Heredity, 42(1), 77–92.

    Article  CAS  PubMed  Google Scholar 

  • Sidenberg, D. G., Bassett, A. S., Demchyshyn, L., et al. (1993). New polymorphism for the human serotonin 1D receptor variant (5-HT1D beta) not linked to schizophrenia in five Canadian pedigrees. Human Heredity, 43(5), 315–318.

    Article  CAS  PubMed  Google Scholar 

  • Sobel, E., & Lange, K. (1996). Descent graphs in pedigree analysis: Applications to haplotyping, location scores, and marker sharing statistics. The American Journal of Human Genetics, 58, 1323–1337.

    CAS  PubMed  Google Scholar 

  • Zavattari, P., Lampis, R., & Mulargia, A. (2000). Confirmation of the DRB1-DQB1 loci as the major component of IDDM1 in the isolated founder population of Sardinia. Human Molecular Genetics, 9, 2967–2972.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bulayeva, K., Bulayev, O., Glatt, S. (2016). Mapping Genes of Schizophrenia in Selected Dagestan Isolates. In: Genomic Architecture of Schizophrenia Across Diverse Genetic Isolates. Springer, Cham. https://doi.org/10.1007/978-3-319-31964-3_4

Download citation

Publish with us

Policies and ethics