Skip to main content

Stress-Based Finite Element Methods in Linear and Nonlinear Solid Mechanics

  • Chapter
  • First Online:
Advanced Finite Element Technologies

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 566))

Abstract

A comparison of stress-based finite element methods is given for the prototype problem of linear elasticity and then extended to finite-strain hyperelasticity. Of particular interest is the accuracy of traction forces in reasonable Sobolev norms with an emphasis on uniform approximation behavior in the incompressible limit. The mixed formulation of Hellinger–Reissner type leading to a saddle-point problem as well as a first-order system least-squares approach are investigated and the strong connections between these two methods are studied. In addition, we also discuss stress reconstruction techniques based on displacement approximations by nonconforming finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold, D. N., Brezzi, F., & Douglas, J. (1984a). PEERS: A new mixed finite element for plane elasticity. Japan Journal of Industrial and Applied Mathematics, 1, 347–367.

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, D. N., Douglas, J., & Gupta, C. P. (1984b). A family of higher order mixed finite element methods for plane elasticity. Numerische Mathematik, 45, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Auricchio, F., Beirão da Veiga, L., Lovadina, C., & Reali, A. (2010). The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: Mixed FEMs versus NURBS-based approximations. Computer Methods in Applied Mechanics and Engineering, 199, 314–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A., Taylor, R., & Wriggers, P. (2013). Approximation of incompressible large deformation elastic problems: Some unresolved issues. Computational Mechanics, 52, 1153–1167.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertrand, F., Münzenmaier, S., & Starke, G. (2014). First-order system least squares on curved boundaries: Higher-order Raviart-Thomas elements. SIAM Journal on Numerical Analysis, 52, 3165–3180.

    Article  MathSciNet  MATH  Google Scholar 

  • Bochev, P., & Gunzburger, M. (2009). Least-squares finite element methods. New York: Springer.

    MATH  Google Scholar 

  • Boffi, D., Brezzi, F., & Fortin, M. (2009). Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 8, 95–121.

    MathSciNet  MATH  Google Scholar 

  • Boffi, D., Brezzi, F., & Fortin, M. (2013). Mixed finite element methods and applications. Heidelberg: Springer.

    Book  MATH  Google Scholar 

  • Braess, D., Pillwein, V., & Schöberl, J. (2009). Equilibrated residual error estimates are \(p\)-robust. Computer Methods in Applied Mechanics and Engineering, 198, 1189–1197.

    Article  MathSciNet  MATH  Google Scholar 

  • Brandts, J., Chen, Y., & Yang, J. (2006). A note on least-squares mixed finite elements in relation to standard and mixed finite elements. IMA Journal of Numerical Analysis, 26, 779–789.

    Article  MathSciNet  MATH  Google Scholar 

  • Brenner, S. C. (2003). Korn’s inequalities for piecewise \(H^1\) vector fields. Mathematics of Computation, 73, 1067–1087.

    Article  MATH  Google Scholar 

  • Brenner, S. C., & Scott, L. R. (2008). The mathematical theory of finite element methods (3rd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Cai, Z., & Starke, G. (2004). Least squares methods for linear elasticity. SIAM Journal on Numerical Analysis, 42, 826–842.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, Z., & Zhang, S. (2012). Robust equilibrated residual error estimator for diffusion problems: Conforming elements. SIAM Journal on Numerical Analysis, 50, 151–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, Z., Korsawe, J., & Starke, G. (2005). An adaptive least squares mixed finite element method for the stress-displacement formulation of linear elasticity. Numerical Methods for Partial Differential Equations, 21, 132–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Carstensen, C., & Dolzmann, G. (1998). A posteriori error estimates for mixed FEM in elasticity. Numerische Mathematik, 81, 187–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Carstensen, C., & Dolzmann, G. (2004). An a priori error estimate for finite element discretizations in nonlinear elasticity for polyconvex materials under small loads. Numerische Mathematik, 97, 67–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G. (1988). Mathematical elasticity volume I: Three-dimensional elasticity. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Ern, A., & Vohralík, M. (2015). Polynomial-degree-robust a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM Journal on Numerical Analysis, 53, 1058–1081.

    Article  MathSciNet  MATH  Google Scholar 

  • Fortin, M. (1985). A three-dimensional quadratic nonconforming element. Numerische Mathematik, 46, 269–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Fortin, M., & Soulie, M. (1983). A non-conforming piecewise quadratic finite element on triangles. International Journal for Numerical Methods in Engineering, 19, 505–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Girault, V., & Raviart, P.-A. (1986). Finite element methods for Navier-stokes equations. New York: Springer.

    Book  MATH  Google Scholar 

  • Kim, K.-Y. (2012). Flux reconstruction for the P2 nonconforming finite element method with application to a posteriori error estimation. Applied Numerical Mathematics, 62, 1701–1717.

    Article  MathSciNet  MATH  Google Scholar 

  • Klaas, O., Schröder, J., Stein, E., & Miehe, C. (1995). A regularized dual mixed element for plane elasticity: Implementation and performance of the BDM element. Computer Methods in Applied Mechanics and Engineering, 121, 201–209.

    Article  MATH  Google Scholar 

  • LeTallec, P. (1994). In Ciarlet, P. G. & Lions, J. L. (Eds.), Numerical methods for nonlinear three-dimensional elasticity (pp. 465–662). Handbook of numerical analysis III. Amsterdam: North-Holland.

    Google Scholar 

  • Luce, R., & Wohlmuth, B. (2004). A local a posteriori error estimator based on equilibrated fluxes. SIAM Journal on Numerical Analysis, 42, 1394–1414.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, B., Starke, G., Schwarz, A., & Schröder, J. (2014). A first-order system least squares method for hyperelasticity. SIAM Journal on Scientific Computing, 36, B795–B816.

    Article  MathSciNet  MATH  Google Scholar 

  • Nicaise, S., Witowski, K., & Wohlmuth, B. (2008). An a posteriori error estimator for the Lamé equation based on equilibrated fluxes. IMA Journal of Numerical Analysis, 28, 331–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Parés, N., Bonet, J., Huerta, A., & Peraire, J. (2006). The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations. Computer Methods in Applied Mechanics and Engineering, 195, 406–429.

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy, B. D. (1992). Mixed variational inequalities arising in elastoplasticity. Nonlinear Analysis, 19, 1071–1089.

    Article  MathSciNet  MATH  Google Scholar 

  • Rössle, A. (2000). Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners. Journal of Elasticity, 60, 57–75.

    Article  MathSciNet  MATH  Google Scholar 

  • Schwarz, A., Schröder, J., & Starke, G. (2009). Least-squares mixed finite elements for small strain elasto-viscoplasticity. International Journal for Numerical Methods in Engineering, 77, 1351–1370.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J . C. (1998). In Ciarlet, P. G. & Lions, J. L. (Eds.), Numerical analysis and simulation of plasticity (pp. 183–499). Handbook of numerical analysis VI. Amsterdam: North-Holland.

    Google Scholar 

  • Starke, G. (2007). An adaptive least-squares mixed finite element method for elasto-plasticity. SIAM Journal on Numerical Analysis, 45, 371–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Stenberg, R. (1988). A family of mixed finite elements for the elasticity problem. Numerische Mathematik, 53, 513–538.

    Article  MathSciNet  MATH  Google Scholar 

  • Wriggers, P. (2008). Nonlinear finite element methods. Berlin: Springer.

    MATH  Google Scholar 

Download references

Acknowledgments

The work reported here was supported by the German Research Foundation (DFG) under grant STA 402/11-1. The authors would also like to thank Jörg Schröder and Alexander Schwarz for many discussions on the subject in the past years, especially related to the topic of Sect. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Starke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Müller, B., Starke, G. (2016). Stress-Based Finite Element Methods in Linear and Nonlinear Solid Mechanics. In: Schröder, J., Wriggers, P. (eds) Advanced Finite Element Technologies. CISM International Centre for Mechanical Sciences, vol 566. Springer, Cham. https://doi.org/10.1007/978-3-319-31925-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31925-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31923-0

  • Online ISBN: 978-3-319-31925-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics