Skip to main content

Inverse Problem for Phase Change Materials and Preparation in Building Envelope

  • Chapter
  • First Online:
Renewable Energy and Sustainable Technologies for Building and Environmental Applications
  • 1583 Accesses

Abstract

Conventional methods to analyze building energy are of limitation and difficult to determine the best building envelope structure, best material thermal properties, and the best way for heating or cooling. In this paper, the research on the inverse problem for phase change materials and the application in building envelope by our group was reviewed, which can be used to guide the building envelope thermal performance design, material preparation and selection for effective use of renewable energy, reducing building operational energy consumption, increasing building thermal comfort, and reducing environment pollution and greenhouse gas emission. This paper also presents some current problems needed further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (2006) Key world energy statistics

    Google Scholar 

  2. Luis PE, Jose O, Christine P (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398

    Article  Google Scholar 

  3. http://en.wikipedia.org/wiki/Phase-change_material

  4. Wang X, Zhang YP, Xiao W, Zeng RL, Zhang QL, Di HF (2009) Review on thermal performance of phase change energy storage building envelope. Chin Sci Bull 54(6):920–928

    Google Scholar 

  5. Cabeza LF, Castell A, Barreneche C, de Gracia A, Fernández AI (2011) Materials used as PCM in thermal energy storage in buildings: A review. Renew Sustain Energy Rev 15:1675–1695

    Article  Google Scholar 

  6. Na Z, Zhenjun M, Shengwei W (2009) Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy Convers Manag 50:3169–3181

    Article  Google Scholar 

  7. Al-abidi AA, Mat SB, Sopian K, Sulaiman MY, Mohammed AT (2013) CFD applications for latent heat thermal energy storage: a review. Renew Sustain Energy Rev 20:353–363

    Article  Google Scholar 

  8. Zhang YP, Lin KP, Zhang QL, Di HF (2006) Ideal thermophysical properties for free-cooling (or heating) buildings with constant thermal physical property material. Energy Build 38:1164–1170

    Article  Google Scholar 

  9. Zeng RL, Wang X, Di HF, Jiang F, Zhang YP (2011) New concepts and approach for developing energy efficient buildings: Ideal specific heat for building internal thermal mass. Energy Build 43:1081–1090

    Article  Google Scholar 

  10. Wang X, Zeng RL, Cheng R, Zhang YP (2014) Ideal thermal physical properties of building wall in an active room. Indoor Built Environ 23(6):839–853

    Article  Google Scholar 

  11. Zhang Y, Zhang YP, Wang X, Chen Q (2013) Ideal thermal conductivity of a passive building wall: determination method and understanding. Appl Energy 112:967–974

    Article  Google Scholar 

  12. HVAC Design Criterion (2001) Standard of PR China (GBJ 19-87), Beijing (in Chinese)

    Google Scholar 

  13. Cheng R, Pomianowski M, Wang X, Heiselberg P, Zhang YP (2013) A new method to determine thermophysical properties of PCM-concrete brick. Appl Energy 112:988–998

    Article  Google Scholar 

  14. Xiao W, Wang X, Zhang YP (2009) Analytical optimization of interior PCM for energy storage in a lightweight passive solar room. Appl Energy 86(10):2013–2018

    Article  Google Scholar 

  15. Jiang F, Wang X, Zhang YP (2011) A new method to estimate optimal phase change material characteristic in a passive solar room. Energy Convers Manag 52:2437–2441

    Article  Google Scholar 

  16. Jiang F, Wang X, Zhang YP (2012) Analytical optimization of specific heat of building internal envelope. Energy Convers Manag 63:239–244

    Article  Google Scholar 

  17. Hua J, Fan HM, Wang X, Zhang YP (2015) A novel concept to determine the optimal heating mode of residential rooms based on the inverse problem method. Build Environ 85:73–84

    Article  Google Scholar 

  18. Yang R (2012) Encapsulated phase change materials and their applications in buildings. Adv Mater Res 509:82–89

    Article  Google Scholar 

  19. Inaba H, Tu P (1997) Evaluation of thermophysical characteristics on shape stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf 32(4):307–312

    Article  Google Scholar 

  20. Ye H, Ge X (2000) Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material. Sol Energy Mater Sol Cells 64:37–44

    Article  Google Scholar 

  21. Qin PH, Yang R, Zhang YP, Lin KP (2003) Preparation and thermal performance analysis of shape-stabilized phase change material. J Tsinghua Univ Sci 43(6):833–835 (in Chinese)

    Google Scholar 

  22. Sarı A (2004) Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Mgmt 45(13–14):2033–2042

    Article  Google Scholar 

  23. Alkan C, Kaya K, Sarı A (2009) Preparation, thermal properties and thermal reliability of form-stable paraffin/polypropylene composite for thermal energy storage. J Polym Environ 17:254–258

    Article  Google Scholar 

  24. Krupa I, Mikova G, Luyt AS (2007) Polypropylene as a potential matrix for the reaction of shape stabilized phase change materials. Euro Polym 43:895–907

    Article  Google Scholar 

  25. Xiao M, Feng B, Gong K (2001) Thermal performance of a high conductive shape-stabilized thermal storage material. Sol Energy Mater Sol Cells 69:293–296

    Article  Google Scholar 

  26. Song G, Ma S, Tang G, Yin Z, Wang X (2010) Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide. Energy 35:2179–2183

    Article  Google Scholar 

  27. Luo CY, Lin XC, Xiao WD, Xu ZJ, Zeng ZL (2010) Research on different polyolefin encapsulating paraffin as form-stable phase change materials. New Chem Mater 38(7):100–104

    Google Scholar 

  28. Cai YB, Hu Y, Song L, Lu H, Chen Z, Fan W (2006) Preparation and characterizations of HDPE-EVA alloy/OMT nano-composites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochim Acta 451:44–51

    Article  Google Scholar 

  29. Wang Y, Wang SY, Wang JP, Yang R (2014) Preparation, stability and mechanical property of shape-stabilized phase change materials. Energy Build 77(1):11–16

    Article  Google Scholar 

  30. Chen YS, Chen K, Shen BJ, Jiang F, Yang R, Zhang YP (2006) Preparation of cross-linked shape-stabilized phase change material. Acta Materiae Compositae Sinica 23(3):67–70 (in Chinese)

    Google Scholar 

  31. Sharma A, Sharma SD, Buddhi D (2002) Accelerated thermal cycle test of acetamide, stearic acid and paraffin wax for solar thermal latent heat storage applications. Energy Convers Manag 43(14):1923–1930

    Article  Google Scholar 

  32. Sarı A, Sarı H, Önal A (2004) Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials. Energy Convers Manag 45(3):365–376

    Article  Google Scholar 

  33. Sun Z, Kong W, Zheng S, Frost RL (2013) Study on preparation and thermal energy storage properties of binary paraffin blends/opal shape-stabilized phase change materials. Sol Energy Mater Sol Cells 117:400–407

    Article  Google Scholar 

  34. Xu X, Zhang YP, Lin KP, Di HF, Yang R (2005) Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings. Energy Build 37(10):1084–1091

    Article  Google Scholar 

  35. Zhang YP, Ding JH, Wang X, Yang R, Lin KP (2006) Influence of additives on thermal conductivity of shape-stabilized phase change material. Sol Energy Mater Sol Cells 90(11):1692–1702

    Article  Google Scholar 

  36. Cheng WL, Zhang RM, Xie K (2010) Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Sol Energy Mater Sol Cells 94:1636–1642

    Article  Google Scholar 

  37. Cai YB, Hu Y, Song L, Kong Q, Yang R, Zhang YP (2007) Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material. Energy Convers Manag 48:462–469

    Article  Google Scholar 

  38. Cai YB, Wei Q, Huang F, Gao F (2008) Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites. Appl Energy 85:765–775

    Article  Google Scholar 

  39. Zhang P, Song L, Lu HD, Wang J, Hu Y (2010) The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material. Energy Convers Manage 51:2733–2737

    Article  Google Scholar 

  40. Sittisart P, Farid MM (2011) Fire retardants for phase change materials. Appl Energy 88:3140–3145

    Article  Google Scholar 

  41. Wang JP, Wang Y, Yang R (2015) Flame retardance property of shape-stabilized phase change materials. Sol Energy Mater Sol Cells 140:439–445

    Article  Google Scholar 

Download references

Acknowledgments

This research is financed by the 12th Five-year Plan Project of China (2013BAJ03B04) and the Seventh Framework Program-Marie Curie Actions (PIIF-GA-2013-622117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, X., Yang, R., Riffat, S. (2016). Inverse Problem for Phase Change Materials and Preparation in Building Envelope. In: Ahmad, M., Ismail, M., Riffat, S. (eds) Renewable Energy and Sustainable Technologies for Building and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31840-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31840-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31838-7

  • Online ISBN: 978-3-319-31840-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics