Skip to main content

Adaptive Seeding for Gaussian Mixture Models

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9652))

Included in the following conference series:

Abstract

We present new initialization methods for the expectation-maximization algorithm for multivariate Gaussian mixture models. Our methods are adaptions of the well-known K-means++ initialization and the Gonzalez algorithm. Thereby we aim to close the gap between simple random, e.g. uniform, and complex methods, that crucially depend on the right choice of hyperparameters. Our extensive experiments indicate the usefulness of our methods compared to common techniques and methods, which e.g. apply the original K-means++ and Gonzalez directly, with respect to artificial as well as real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The (inverse) pdf is unsuited due to the exponential behavior (over-/underflows).

  2. 2.

    Even wrt. a single Gaussian, i.e. \(\log \mathcal {N}(c\cdot x|c\cdot \mu ,c^2\cdot \varSigma )=\log \mathcal {N}(x|\mu ,\varSigma )-D \ln (c)\).

  3. 3.

    As explained before, our goal is not to identify these GMMs.

  4. 4.

    Averaging the (average) log-likelihood values over different data sets is not meaningful since the optimal log-likelihoods may deviate significantly.

References

  1. GeoNames geographical database. http://www.geonames.org/

  2. Achtert, E., Goldhofer, S., Kriegel, H.-P., Schubert, E., Zimek, A.: Evaluation of Clusterings - Metrics and Visual Support. http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView

  3. Arthur, V.: k-means++: The advantages of careful seeding. In: SODA 2007 (2007)

    Google Scholar 

  4. Asuncion: UCI machine learning repository (2007). http://www.ics.uci.edu/mlearn/MLRepository.html

  5. Baudry, J.-P., Celeux, G.: EM for mixtures. Stat. Comput. 25(4), 713–726 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biernacki, C.: Initializing EM using the properties of its trajectories in Gaussian mixtures. Stat. Comput. 14(3), 267–279 (2004)

    Article  MathSciNet  Google Scholar 

  7. Biernacki, C., Celeux, G., Govaert, G.: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput. Stat. Data Anal. 41(3–4), 561–575 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Secaucus (2006)

    MATH  Google Scholar 

  9. Bujna, K., Kuntze, D.: Supplemental Material. http://www-old.cs.upb.de/fachgebiete/ag-bloemer/forschung/clusteranalyse/adaptive_seeding_for_gmms.html

  10. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 14(3), 315–332 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dasgupta, S.: Experiments with random projection. In: UAI 2000 (2000)

    Google Scholar 

  12. Dasgupta, S.: Learning mixtures of gaussians. In: FOCS 1999 (1999)

    Google Scholar 

  13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Färber, I., Günnemann, S., Kriegel, H., Kröger, P., Müller, E., Schubert, E., Seidl, T., Zimek, A.: On using class-labels in evaluation of clusterings. In: MultiClust 2010 (2010)

    Google Scholar 

  15. Fayyad, U., Reina, C., Bradley, P.S.: Initialization of iterative refinement clustering algorithms. In: KDD 1998 (1998)

    Google Scholar 

  16. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 6(1), 103–112 (2005)

    Article  Google Scholar 

  17. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kriegel, H.-P., Schubert, E., Zimek, A.: Evaluation of multiple clustering solutions. In: MultiClust 2010 (2010)

    Google Scholar 

  19. Krüger, A., Leutnant, V., Haeb-Umbach, R., Ackermann, M., Blömer, J.: On the initialization of dynamic models for speech features. In: Sprachkommunikation 2010 (2010)

    Google Scholar 

  20. Kwedlo, W.: A new random approach for initialization of the multiple restart EM algorithm for Gaussian model-based clustering. Pattern Anal. Appl. 18(4), 757–770 (2015)

    Article  MathSciNet  Google Scholar 

  21. Maitra, R.: Initializing partition-optimization algorithms. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(1), 144–157 (2009)

    Article  Google Scholar 

  22. Maitra, R., Melnykov, V.: Simulating data to study performance of finite mixture modeling and clustering algorithms. J. Comput. Graph. Stat. 19(2), 354–376 (2010)

    Article  MathSciNet  Google Scholar 

  23. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series in Probability and Statistics, 2nd edn. Wiley-Interscience, New York (2008)

    Book  MATH  Google Scholar 

  24. Meilă, M., Heckerman, D.: An experimental comparison of several clustering and initialization methods. In: UAI 1998. Morgan Kaufmann Inc., San Francisco (1998)

    Google Scholar 

  25. Melnykov, V., Melnykov, I.: Initializing the EM algorithm in Gaussian mixture models with an unknown number of components. Comput. Stat. Data Anal. 56, 1381–1395 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thiesson, B.: Accelerated quantification of Bayesian networks with incomplete data. University of Aalborg (1995)

    Google Scholar 

  27. Verbeek, J.J., Vlassis, N., Kröse, B.: Efficient greedy learning of Gaussian mixture models. Neural Comput. 15(2), 469–485 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Bujna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Blömer, J., Bujna, K. (2016). Adaptive Seeding for Gaussian Mixture Models. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9652. Springer, Cham. https://doi.org/10.1007/978-3-319-31750-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31750-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31749-6

  • Online ISBN: 978-3-319-31750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics