Skip to main content

The Effect of Branch Parameter Errors to Voltage Stability Indices

  • Conference paper
  • First Online:
Critical Information Infrastructures Security (CRITIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8985))

  • 1405 Accesses

Abstract

Errors in the values of network parameters stored in the control center may affect the important application of voltage stability monitoring. This paper investigates the effect of branch parameters errors to voltage stability monitoring, using the state vector obtained by the state estimator. In particular, the state vector is used for calculating a voltage stability index that indicates the most critical branch (the one that first reaches its active power transfer limit). The states of the power system are estimated under various scenarios of possible errors in the reactance of the critical branch and then are used for the calculation of the voltage stability index. The case studies are performed using the IEEE systems with 14 and 39 buses and it is shown that the calculated value of the stability index depends on the error in the branch parameters, the power system structure and the contingency leading to voltage instability.

This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation (Project PENEK/0311/42 for the state estimation part and Project PROSELKYSH/NEOS/ 0311/34 for the stability part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novosel, D., Madani, V., Bhargava, B., Khoi, V., Cole, J.: Dawn of the grid synchronization. IEEE Power Energy Mag. 6(1), 49–60 (2008)

    Article  Google Scholar 

  2. Kirschen, D., Bouffard, F.: Keeping the lights on and the information flowing. IEEE Power Energy Mag. 7(1), 50–60 (2009)

    Article  Google Scholar 

  3. Van Cutsem, T., Vournas, C.: Voltage Stability of Electric Power Systems. Kluwer, Norwell (1998)

    Book  Google Scholar 

  4. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

  5. Diao, R., et al.: Decision tree-based online voltage security assessment using PMU measurements. IEEE Trans. Power Syst. 24(2), 832–839 (2009)

    Article  Google Scholar 

  6. Chakrabarti, S., Jeyasurya, B.: Multicontingency voltage stability monitoring of a power system using an adaptive radial basis function network. Int. J. Electr. Power Energy Syst. 30(1), 1–7 (2008)

    Article  Google Scholar 

  7. Adamiak, M.G., et al.: Wide area protection-technology and infrastructures. IEEE Trans. Power Deliv. 21(2), 601–609 (2006)

    Article  Google Scholar 

  8. Vittal, V., et al.: A tool for on-line stability determination and control for coordinated operations between regional entities using PMUs. PSERC (2008)

    Google Scholar 

  9. Wang, Y., Pordanjani, I.R., Li, W., Xu, W., Chen, T., Vaahedi, E., Gurney, J.: Voltage stability monitoring based on the concept of coupled single-port circuit. IEEE Trans. Power Syst. 26(4), 2154–2163 (2011)

    Article  Google Scholar 

  10. Salehi, V., Mohammed, O.: Real-time voltage stability monitoring and evaluation using synchorophasors. In: Proceedings of North American Power Symposium (NAPS) (2011)

    Google Scholar 

  11. Kamwa, I., Grondin, R., Hebert, Y.: Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach. IEEE Trans. Power Syst. 16, 136–153 (2001)

    Article  Google Scholar 

  12. Interrante, J., Aggour, K.S.: Applying cluster computing to enable a large-scale smart grid stability monitoring application. In: High Performance Computing and Communication and IEEE 9th International Conference on Embedded Software and Systems (HPCC-ICESS) (2012)

    Google Scholar 

  13. Asprou, M., Kyriakides, E.: Enhancement of hybrid state estimation using pseudo flow measurements. In: Proceedings of IEEE Power and Energy Society General Meeting, pp. 1–7 (2011)

    Google Scholar 

  14. Asprou, M., et al.: The use of a PMU-based state estimator for tracking power system dynamics. In: IEEE Power and Energy Society General Meeting (2014)

    Google Scholar 

  15. Christie, R.: Power system test archive. http://www.ee.washington.edu/research/pstca

  16. Pai, M.A.: Energy Function Analysis for Power System Stability. Kluwer, Boston (1989)

    Book  Google Scholar 

  17. Abur, A., Gomez-Exposito, A.: Power System State Estimation: Theory and Implementation. Springer, New York (2004)

    Book  Google Scholar 

  18. Salehi, V., et al.: Laboratory-based smart power system, part II: control, monitoring, and protection. IEEE Trans. Smart Grid 3(3), 1405–1417 (2012)

    Article  Google Scholar 

  19. Nguegan, Y., et al.: Online monitoring of the electrical power transfer stability and voltage profile stability margins in electric power transmission systems using phasor measurement units data sets. In: Power and Energy Engineering Conference (2009)

    Google Scholar 

  20. Nguegan, Y.: Real-time identification and monitoring of the voltage stability margin in electric power transmission systems using synchronized phasor measurements. Ph.D. thesis, Department of Electrical Engineering, Kassel University, Kassel, Germany (2009)

    Google Scholar 

  21. Gong, Y., Schulz, N., Guzman, A.: Synchrophasor-based real-time voltage stability index. In: Proceedings of IEEE PES Power Systems Conference and Exposition (PSCE), pp. 1029–1036 (2006)

    Google Scholar 

  22. Gong, Y.: Development of an improved on-line voltage stability index using synchronized phasor measurement, Ph.D. thesis, Mississippi State University (2005)

    Google Scholar 

  23. PowerWorld corporation. http://powerworld.com

  24. Asprou, M., Kyriakides, E.: Optimal PMU placement for improving hybrid state estimation accuracy. In: IEEE PowerTech, Norway (2011)

    Google Scholar 

  25. Chakrabarti, S., Kyriakides, E.: Optimal placement of phasor measurement units for power system observability. IEEE Trans. Power Syst. 23(3), 1433–1440 (2008)

    Article  Google Scholar 

  26. Kusic, G.L., Garrison, D.L.: Measurement of transmission line parameters from SCADA data. IEEE PES Power Syst. Conf. 1, 440–445 (2004)

    Google Scholar 

  27. Bockarjova, M., Andersson, G.: Transmission line conductor temperature impact on state estimation accuracy. In: IEEE Power Tech, pp. 701–706 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedran Kirincic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kirincic, V., Asprou, M., Mavroeidis, P., Kyriakides, E. (2016). The Effect of Branch Parameter Errors to Voltage Stability Indices. In: Panayiotou, C., Ellinas, G., Kyriakides, E., Polycarpou, M. (eds) Critical Information Infrastructures Security. CRITIS 2014. Lecture Notes in Computer Science(), vol 8985. Springer, Cham. https://doi.org/10.1007/978-3-319-31664-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31664-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31663-5

  • Online ISBN: 978-3-319-31664-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics