Skip to main content

Snap-Through Buckling of Micro/Nanobeams in Bistable Micro/Nanoelectromechanical Systems

  • Chapter
  • First Online:
Advances in Nanocomposites

Abstract

In this chapter, we investigate the instability behavior of an initially curved micro/nanobeam subject to an electrostatic force. The general governing equations of the curved beam are developed using Euler-Bernoulli beam theory and are solved using the Galerkin decomposition method. Firstly, the size effect on the symmetric snap-through buckling of the microbeam is studied. The size effect is accounted for in the beam model using the modified couple stress theory. The fringing field effect and the intermolecular effects, such as van der Waals and Casimir forces, are also included in the snap-through formulations. The model simulations reveal the significant effect of the beam size, and to a much lesser extent the effect of fringing field and intermolecular forces, upon the snap-through criterion for the curved microbeam. Secondly, the surface effects on the asymmetric bifurcation of the nanobeam are studied. The surface effects, including the surface elasticity and the residual surface tension, are accounted for in the model formulation. The results reveal the significant size effect due to the surface elasticity and the residual surface tension on the symmetry-breaking criterion for the considered nanobeam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asthana, A., Momeni, K., Prasad, A., Yap, Y.K., Yassar, R.S.: In situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology 22, 265712 (2011)

    Article  Google Scholar 

  • Ballestra, A., Brusa, E., De Pasquale, G., Munteanu, M.G., Soma, A.: FEM modelling and experimental characterization of microbeams in presence of residual stress. Analog Integr. Circ. Sig. Process 63, 477–488 (2010)

    Article  Google Scholar 

  • Batra, R.C., Porfiri, M., Spinello, D.: Electromechanical model of electrically actuated narrow microbeams. J. Microelectromech. Syst. 15, 1175–1189 (2006)

    Article  Google Scholar 

  • Batra, R.C., Porfiri, M., Spinello, D.: Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater. Struct. 16, R23–R31 (2007)

    Article  Google Scholar 

  • Belardinelli, P., Lenci, S., Brocchini, M.: Modeling and analysis of an electrically actuated microbeam based on nonclassical beam theory. J. Comput. Nonlin. Dyn. 9, 031016 (2014)

    Article  Google Scholar 

  • Carr, D.W., Evoy, S., Sekaric, L., Craighead, H.G., Parpia, J.M.: Measurement of mechanical resonance and losses in nanometer scale silicon wires. Appl. Phys. Lett. 75, 920–922 (1999)

    Article  Google Scholar 

  • Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. Ser. B 51, 793–795 (1948)

    Google Scholar 

  • Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  • Charlot, B., Sun, W., Yamashita, K., Fujita, H., Toshiyoshi, H.: Bistable nanowire for micromechanical memory. J. Micromech. Microeng. 18, 045005 (2008)

    Article  Google Scholar 

  • Chen, T., Chiu, M.-S., Weng, C.-N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  Google Scholar 

  • Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 (2004)

    Article  Google Scholar 

  • Das, K., Batra, R.C.: Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. J. Micromech. Microeng. 19, 035008 (2009a)

    Article  Google Scholar 

  • Das, K., Batra, R.C.: Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches. Smart Mater. Struct. 18, 115008 (2009b)

    Article  Google Scholar 

  • Dequesnes, M., Rotkin, S.V., Aluru, N.R.: Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13, 120–131 (2002)

    Article  Google Scholar 

  • Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1854 (2005)

    Article  Google Scholar 

  • Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  • Farokhi, H., Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int. J. Eng. Sci. 68, 11–23 (2013)

    Article  Google Scholar 

  • Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  Google Scholar 

  • Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiments. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  • Fu, Y., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl. Math. Model. 35, 941–951 (2011)

    Article  Google Scholar 

  • Fu, Y., Zhang, J., Jiang, Y.: Influences of the surface energies on the nonlinear static and dynamic behaviors of nanobeams. Phys. E. 42, 2268–2273 (2010)

    Article  Google Scholar 

  • Goll, C., Bacher, W., Büstgens, B., Maas, D., Menz, W., Schomburg, W.K.: Microvalves with bistable buckled polymer diaphragms. J. Micromech. Microeng. 6, 77–79 (1996)

    Article  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  Google Scholar 

  • Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  • He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  • Hu, Y.C., Chang, C.M., Huang, S.C.: Some design considerations on the electrostatically actuated microstructures. Sens. Actuators A Phys. 112, 155–161 (2004)

    Article  Google Scholar 

  • Intaraprasonk, V., Fan, S.: Nonvolatile bistable all-optical switch from mechanical buckling. Appl. Phys. Lett. 98, 241104 (2011)

    Article  Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic, Waltham, MA (2011)

    Google Scholar 

  • Jia, X.L., Yang, J., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta Mech. 218, 161–174 (2011)

    Article  Google Scholar 

  • Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006)

    Article  Google Scholar 

  • Ke, C.-H., Pugno, N., Peng, B., Espinosa, H.D.: Experiments and modeling of carbon nanotube-based NEMS devices. J. Mech. Phys. Solids 53, 1314–1333 (2005)

    Article  Google Scholar 

  • Kinaret, J.M., Nord, T., Viefers, S.: A carbon-nanotube-based nanorelay. Appl. Phys. Lett. 82, 1287–1289 (2003)

    Article  Google Scholar 

  • Kong, S.: Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl. Math. Model. 37, 7481–7488 (2013)

    Article  Google Scholar 

  • Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18, 055026 (2008)

    Article  Google Scholar 

  • Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  Google Scholar 

  • Li, Y., Meguid, S.A., Fu, Y., Xu, D.: Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mech. 224, 1741–1755 (2013)

    Article  Google Scholar 

  • Li, X., Ono, T., Wang, Y., Esashi, M.: Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3083 (2003)

    Article  Google Scholar 

  • Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956)

    Google Scholar 

  • Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  • Ma, H.M., Gao, X.-L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  Google Scholar 

  • McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Article  Google Scholar 

  • Medina, L., Gilat, R., Krylov, S.: Symmetry breaking in an initially curved micro beam loaded by a distributed electrostatic force. Int. J. Solids Struct. 49, 1864–1876 (2012)

    Article  Google Scholar 

  • Medina, L., Gilat, R., Krylov, S.: Symmetry breaking in an initially curved pre-stressed micro beam loaded by a distributed electrostatic force. Int. J. Solids Struct. 51, 2047–2061 (2014a)

    Article  Google Scholar 

  • Medina, L., Gilat, R., Krylov, S.: Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams. Sens. Actuators A 220, 323–332 (2014b)

    Article  Google Scholar 

  • Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  • Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  • Moghimi Zand, M.: The dynamic pull-in instability and snap-through behavior of initially curved microbeams. Mech. Adv. Mater. Struct. 19, 485–491 (2012)

    Article  Google Scholar 

  • Pane, I.Z., Asano, T.: Investigation on bistability and fabrication of bistable prestressed curved beam. Jpn. J. Appl. Phys. 47, 5291–5296 (2008)

    Article  Google Scholar 

  • Park, S., Hah, D.: Pre-shaped buckled-beam actuators: theory and experiments. Sens. Actuators A Phys. 148, 186–192 (2008)

    Article  Google Scholar 

  • Patricio, P., Adda-Bedia, M., Ben Amar, M.: An elastic problem: instabilities of an elastic arch. Physica D 124, 285–295 (1998)

    Article  Google Scholar 

  • Pippard, A.B.: The elastic arch and its modes of instability. Eur. J. Phys. 11, 359–365 (1990)

    Article  Google Scholar 

  • Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  Google Scholar 

  • Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  Google Scholar 

  • Rokni, H., Seethaler, R.J., Milani, A.S., Hosseini-Hashemi, S., Li, X.-F.: Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens. Actuators A Phys. 190, 32–43 (2013)

    Article  Google Scholar 

  • Roodenburg, D., Spronck, J.W., van der Zant, H.S.J., Venstra, W.J.: Buckling beam micromechanical memory with on-chip readout. Appl. Phys. Lett. 94, 183501 (2009)

    Article  Google Scholar 

  • Ruzziconi, L., Bataineh, A.M., Younis, M.I., Cui, W., Lenci, S.: Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: experimental investigation and reduced-order modeling. J. Micromech. Microeng. 23, 075012 (2013)

    Article  Google Scholar 

  • Sadeghian, H., Goosen, H., Bossche, A., Thijsse, B., van Keulen, F.: On the size-dependent elasticity of silicon nanocantilevers: impact of defects. J. Phys. D. Appl. Phys. 44, 072001 (2011)

    Article  Google Scholar 

  • Sadeghian, H., Yang, C.K., Goosen, J.F.L., van der Drift, E., Bossche, A., French, P.J., van Keulen, F.: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl. Phys. Lett. 94, 221903 (2009)

    Article  Google Scholar 

  • Salvetat, J.-P., Briggs, G.A.D., Bonard, J.-M., Bacsa, R.R., Kulik, A.J., Stöckli, T., Burnham, N.A., Forro, L.: Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  Google Scholar 

  • Shin, M.K., Kim, S.I., Kim, S.J., Kim, S.-K., Lee, H., Spinks, G.M.: Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 89, 231929 (2006)

    Article  Google Scholar 

  • Tilmans, H.A.C., Legtenberg, R.: Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. theory and performance. Sens. Actuators A Phys. 45, 67–84 (1994)

    Article  Google Scholar 

  • Toupin, R.A.: Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 1, 385–414 (1962)

    Article  Google Scholar 

  • van der Meijs, N.P., Fokkema, J.T.: VLSI circuit reconstruction from mask topology. Integr. VLSI J. 2, 85–119 (1984)

    Article  Google Scholar 

  • Verbridge, S.S., Shapiro, D.F., Craighead, H.G., Parpia, J.M.: Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728–1735 (2007)

    Article  Google Scholar 

  • Wang, G.-F., Feng, X.-Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  Google Scholar 

  • Wang, G.-F., Feng, X.-Q.: Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 94, 141913 (2009)

    Article  Google Scholar 

  • Xu, F., Qin, Q., Mishra, A., Gu, Y., Zhu, Y.: Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 3, 271–280 (2010)

    Article  Google Scholar 

  • Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  Google Scholar 

  • Zhang, Y., Wang, Y., Li, Z., Huang, Y., Li, D.: Snap-through and pull-in instabilities of an arch-shaped beam under an electrostatic loading. J. Microelectromech. Syst. 16, 684–693 (2007)

    Article  Google Scholar 

  • Zhu, H.X.: Size-dependent elastic properties of micro- and nano-honeycombs. J. Mech. Phys. Solids 58, 696–709 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by the Natural Sciences and Engineering Research Council of Canada, the Discovery Accelerator Supplements, and the Qatar National Research Foundation under the National Priority Research Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Meguid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, X., Meguid, S.A. (2016). Snap-Through Buckling of Micro/Nanobeams in Bistable Micro/Nanoelectromechanical Systems. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_9

Download citation

Publish with us

Policies and ethics