Skip to main content

Smart Fuzzy Fiber-Reinforced Piezoelectric Composites

  • Chapter
  • First Online:
Advances in Nanocomposites

Abstract

In this chapter analytical micromechanics model of a novel smart fuzzy fiber-reinforced composite (SFFRC) has been derived. The novel constructional feature of such SFFRC is that the existing vertically reinforced 1–3 piezoelectric composite has been hybridized by radially growing carbon nanotubes (CNTs) on the surface of the cylindrical vertical piezoelectric fibers. The model predicts that the effective in-plane piezoelectric coefficient and the elastic properties of such SFFRC are significantly improved over those of the existing 1–3 piezoelectric composite without reinforced with CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of composite materials. Academic Press, New York (2013)

    Google Scholar 

  • Bailey, T., Hubbard, J.E.: Distributed piezoelectric polymer active vibration control of a cantilever beam. AIAA J. Guid. Contr. 8, 605–611 (1985)

    Article  Google Scholar 

  • Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126, 327–343 (1988)

    Article  Google Scholar 

  • Bower, C., Zhu, W., Jin, S., Zhou, O.: Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 77, 830–832 (2000)

    Article  Google Scholar 

  • Bruke, S.E., Hubbard, J.E.: Active vibration control of a simply supported beam using a spatially distributed actuator. IEEE Contr. Syst. Mag. 8, 25–30 (1987)

    Article  Google Scholar 

  • Chatzigeorgiou, G., Seidel, G.D., Lagoudas, D.C.: Effective mechanical properties of fuzzy fiber composites. Compos. B 43, 2577–2593 (2012)

    Article  Google Scholar 

  • Chee, C., Tong, L., Steven, G.P.: Piezoelectric actuator orientation optimization for static shape control of composite plates. Compos. Struct. 55, 169–184 (1999)

    Article  Google Scholar 

  • Cheng, H.C., Liu, Y.L., Hsu, Y.C., Chen, W.H.: Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solid. Struct. 46, 1695–1704 (2009)

    Article  Google Scholar 

  • Crawley, E.F., Luis, J.D.: Use of piezoelectric actuators as elements of ontelligent structures. AIAA J. 27, 1801–1807 (1987)

    Google Scholar 

  • Dhala, S., Ray, M.C.: Micromechanics of piezoelectric fuzzy fiber-reinforced composites. Mech. Mater. 81, 1–17 (2015)

    Article  Google Scholar 

  • Forward, R.L.: Electronic damping of orthogonal bending modes in a cylindrical mast-experiment. J. Spacecraft Rocket. 18, 11–17 (1981)

    Article  Google Scholar 

  • Gao, X.L., Li, K.: A shear-lag model for carbon nanotube reinforced polymer composites. Int. J. Solid. Struct. 42, 1649–1667 (2005)

    Article  Google Scholar 

  • Gracia, E.J., Wardle, B.L., Hart, A.J., Yamamoto, N.: Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos. Sci. Technol. 68, 2034–2041 (2008)

    Article  Google Scholar 

  • Griebel, M., Hamaekers, J.: Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput. Meth. Appl. Mech. Eng. 193, 1773–1788 (2004)

    Article  Google Scholar 

  • Ha, S.K., Keilers, C., Chang, F.K.: Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators. AIAA J. 30, 772–780 (1992)

    Article  Google Scholar 

  • Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  • Im, S., Atluri, S.N.: Effects of piezoactuator on a finitely deformed beam subjected to general loading. AIAA J. 25, 1373–1385 (1989)

    Google Scholar 

  • Jiang, B., Liu, C., Zhang, C., Liang, R., Wang, B.: Maximum nanotube volume fraction and its effect on overall elastic properties of nanotube-reinforced composites. Composites B 40, 212–217 (2009)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7, 149–166 (2011)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes. Mech. Mater. 53, 47–60 (2012)

    Article  Google Scholar 

  • Lanzara, G., Chang, F.K.: Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs. Smart Mater. Struct. 18, 125001 (2009)

    Article  Google Scholar 

  • Lin, C., Hsu, C., Huang, H.N.: Finite element analysis on deflection control of plates with piezoelectric actuators. Compos. Struct. 35, 423–433 (1996)

    Article  Google Scholar 

  • Mathur, R.B., Chatterjee, S., Singh, B.P.: Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008)

    Article  Google Scholar 

  • Miller, S.E., Hubbard, J.E.: Observability of a Bernoulli-Euler beam using PVF2 as a distributed sensor. MIT Draper Laboratory Report (1987)

    Google Scholar 

  • Newnham, R.E., Shinner, D.P., Cross, L.E.: Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)

    Article  Google Scholar 

  • Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)

    Article  Google Scholar 

  • Ray, M.C.: Concept of a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers. Smart Mater. Struct. 19, 035008 (2010)

    Article  Google Scholar 

  • Ray, M.C., Faye, A.: Theoretical and experimental investigations on active structural-acoustic control of thin isotropic plate using vertically reinforced 1-3 piezoelectric composite. Smart Mater. Struct. 18, 015012 (2009)

    Article  Google Scholar 

  • Ray, M.C., Pradhan, A.K.: On the use of vertically reinforced 1-3 piezoelectric composites for hybrid damping of laminated composite plates. Mech. Adv. Mater. Struct. 15, 245–261 (2007)

    Article  Google Scholar 

  • Ray, M.C., Bhattacharyya, R., Samanta, B.: Static analysis of an intelligent structure by the finite element method. Comput. Struct. 52, 617–631 (1994)

    Article  Google Scholar 

  • Saravanos, D.A., Hetliger, P.R., Hopkins, D.A.: Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solid. Struct. 34, 359–378 (1997)

    Article  Google Scholar 

  • Seidel, G.D., Lagoudas, D.C.: Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech. Mater. 38, 884–907 (2004)

    Article  Google Scholar 

  • Shadlou, M.R., Shokrieh, S., Ayatollahi, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93, 2250–2259 (2011)

    Article  Google Scholar 

  • Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045414 (2004)

    Article  Google Scholar 

  • Smith, W.A., Auld, B.A.: Modeling 1-3 composite piezoelectrics: thickness mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 31, 40–47 (1991)

    Article  Google Scholar 

  • Sohn, J.W., Choi, S.B., Lee, C.H.: Active vibration control of smart hull structure using piezoelectric actuator. Smart Mater. Struct. 18, 074004 (2009)

    Article  Google Scholar 

  • Suresh Kumar, R., Ray, M.C.: Active control of geometrically nonlinear vibrations of doubly curved smart sandwich shells using 1-3 piezoelectric composites. Compos. Struct. 105, 173–187 (2012)

    Article  Google Scholar 

  • Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotubes based composites: modelling and characterization. J. Phys. D Appl. Phys. 36, 573–582 (2003)

    Article  Google Scholar 

  • Treacy, M.M.J., Ebbessen, T.W., Gibson, J.M.: A Exceptionally high Young’s modulus observed for individual carbon nanotube. Nature 381, 678–680 (1996)

    Article  Google Scholar 

  • Varadarajan, S., Chandrashekhara, K., Agarwal, S.: LQG/LTR-based robust control of composite beams with piezoelectric devices. J. Vib. Control. 6, 607–630 (2000)

    Article  Google Scholar 

  • Zhang, Q., Qian, W., Xiang, R., Yang, Z., Luo, G., Wang, Y., Wei, F.: In situ growth of carbon nanotubes on inorganic fibers with different surface properties. Mater. Chem. Phys. 107, 317–321 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas C. Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ray, M.C. (2016). Smart Fuzzy Fiber-Reinforced Piezoelectric Composites. In: Meguid, S. (eds) Advances in Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-31662-8_5

Download citation

Publish with us

Policies and ethics